An Efficient Method for Market Risk Management under Multivariate Extreme Value Theory Approach

Miloš Božović

Center for Investments and Finance Belgrade, Serbia

Department of Mathematics and Informatics University of Novi Sad, Serbia

Moscow Finance Conference November 18-19, 2011

M. Božović Market risk management under multivariate EVT

ъ

Outline

2 The Method

- 3 Data and Empirical Results
 - Data
 - Full-Sample Estimates
 - Backtesting

★ E → < E →</p>

ъ

Market Risk Assessment

Typically relies on quantile-based measures of risk

- Value at Risk (VaR)
- Expected Shortfall (ES)

Conventional methods of VaR and ES estimation in practice:

- Historical simulation
- Analytical method
- Monte Carlo simulation

・ 回 ト ・ ヨ ト ・ ヨ ト

Market Risk Assessment

Typically relies on quantile-based measures of risk

- Value at Risk (VaR)
- Expected Shortfall (ES)

Conventional methods of VaR and ES estimation in practice:

- Historical simulation
- Analytical method
- Monte Carlo simulation

→ E > < E >

Interior vs. Tails

Problem with conventional methods:

- Single parametric family fitted to the whole distribution.
- Trying to reconstruct the entire distribution of returns.
- However, extremely large (but rare) losses are the ones that matter the most!

Extreme Value Theory (EVT) approach:

- Characterizes the tail behavior of distribution of returns.
- Focuses on extreme losses rather than interior.

・ 回 ト ・ ヨ ト ・ ヨ ト

Interior vs. Tails

Problem with conventional methods:

- Single parametric family fitted to the whole distribution.
- Trying to reconstruct the entire distribution of returns.
- However, extremely large (but rare) losses are the ones that matter the most!

Extreme Value Theory (EVT) approach:

- Characterizes the tail behavior of distribution of returns.
- Focuses on extreme losses rather than interior.

→ Ξ → < Ξ →</p>

Previous Empirical Results

VaR and ES estimates obtained by using EVT-based models outperform the ones based on standard methods:

- McNeil (1997)
- Nyström & Skoglund (2002)
- Harmantzis, Chien & Miao (2005)
- Marinelli, d'Addona & Rachev (2007)
- Lai & Wu (2010)

・ 同 ト ・ ヨ ト ・ ヨ ト

Univariate EVT

Theorem

Picklands (1975): Let $\{X_i\}_{i=1}^n$ be a set of *n* independent and identically distributed random variables with distribution function *F*, and *F*_u the distribution of excesses of *X* over the treshold *u*. Let x_F be the end of the upper tail of *F* (possibly $+\infty$). Then, there are constants $\xi \in \mathbb{R}$ and $\beta \in \mathbb{R}_+$ such that

$$\lim_{u\to x_F}\sup_{u< X< x_F}|F_u(X)-G_{\xi,\beta}(X-u)|=0,$$

where

$$G_{\xi,eta}(oldsymbol{y}) := 1 - \left(1 + \xi rac{oldsymbol{y}}{eta}
ight)_+^{-1/\xi}$$

is known as the generalized Pareto (GP) distribution.

Multivariate EVT?

Problems with univariate EVT:

- Useful for portfolio-level analysis only.
- Cannot capture behavior of correlations during extreme market movements.

Problems with available multivariate alternatives:

Copulas

- Too complicated for practitioners.
- More difficult to implement than EVT.
- Introduce additional "model risk".
- Multidimensional limiting relations
 - See e.g. Smith (2000) or Dupuis & Jones (2007).
 - Model complexity increases greatly with the number of risk factors.

Multivariate EVT?

Problems with univariate EVT:

- Useful for portfolio-level analysis only.
- Cannot capture behavior of correlations during extreme market movements.

Problems with available multivariate alternatives:

- Copulas
 - Too complicated for practitioners.
 - More difficult to implement than EVT.
 - Introduce additional "model risk".
- Multidimensional limiting relations
 - See e.g. Smith (2000) or Dupuis & Jones (2007).
 - Model complexity increases greatly with the number of risk factors.

- Use series of returns on individual assets in portfolio.
- Construct *n* orthogonal series that are approximately i.i.d.
- Use separate estimations of univariate EVT.

→ Ξ → < Ξ →</p>

Estimation of the Univariate EVT

- Choose a reasonable treshold *u*.
- Use one of the conventional methods to fit the interior of the distribution (e.g. historical simulation).
- Fit the upper and lower tail separately with the GP distribution.

・ 同 ト ・ ヨ ト ・ ヨ ト

Estimation of the Univariate EVT

M. Božović Market risk management under multivariate EVT

⇒ < ⇒ >

ъ

Principal Components

 In *n* dimensions, use the principal components of the unconditional VCV matrix:

Λ	:=	diag $(\lambda_1, \lambda_2, \ldots, \lambda_n)$
V_{∞}	=	ΡΛΡ′
L	:=	$\mathbf{P} \mathbf{\Lambda}^{1/2}$
\mathbf{z}_t	=	$L^{-1}\varepsilon_t$
$\mathbb{E}\left(\mathbf{z}_{t} ight)$	=	0
$\operatorname{var}(\mathbf{z}_t)$	=	1 _n

• This gives a set of (at most) *n* orthogonal standardized coordinates.

ヘロン ヘアン ヘビン ヘビン

ъ

GARCH Filtering

Conditional variance: GJR-GARCH(p, q)

$$V_{t} = \Omega + \sum_{s=1}^{p} \mathbf{A}_{s} \mathbf{E}_{t-s} + \sum_{s=1}^{p} \Theta_{s} \mathbf{I}_{t-s} \mathbf{E}_{t-s} + \sum_{s=1}^{q} \mathbf{B}_{s} \mathbf{V}_{t-s}$$
$$\mathbf{E}_{t} := \varepsilon_{t} \varepsilon_{t}'$$
$$\mathbf{I}_{t} := \operatorname{diag}(\operatorname{sgn}(-\varepsilon_{t,1})_{+}, \operatorname{sgn}(-\varepsilon_{t,2})_{+}, \ldots, \operatorname{sgn}(-\varepsilon_{t,n})_{+})$$

Make transformation from returns to principal components.
 Estimate n separate univariate GJR-GARCH(p, q) models:

$$\widehat{V}_{t,i} = \widehat{\Omega}_i + \sum_{s=1}^{p} \widehat{A}_{s,i} \widehat{E}_{t-s,i} + \sum_{s=1}^{p} \widehat{\Theta}_{s,i} \widehat{I}_{t-s,i} \widehat{E}_{t-s,i} + \sum_{s=1}^{q} \widehat{B}_{s,i} \widehat{V}_{t-s,i}$$

M. Božović Market risk management under multivariate EVT

GARCH Filtering

Conditional variance: GJR-GARCH(p, q)

$$\mathbf{V}_{t} = \mathbf{\Omega} + \sum_{s=1}^{p} \mathbf{A}_{s} \mathbf{E}_{t-s} + \sum_{s=1}^{p} \Theta_{s} \mathbf{I}_{t-s} \mathbf{E}_{t-s} + \sum_{s=1}^{q} \mathbf{B}_{s} \mathbf{V}_{t-s}$$
$$\mathbf{E}_{t} := \varepsilon_{t} \varepsilon_{t}'$$
$$\mathbf{I}_{t} := \operatorname{diag}(\operatorname{sgn}(-\varepsilon_{t,1})_{+}, \operatorname{sgn}(-\varepsilon_{t,2})_{+}, \ldots, \operatorname{sgn}(-\varepsilon_{t,n})_{+})$$

Make transformation from returns to principal components.
Estimate *n* separate univariate GJR-GARCH(*p*, *q*) models:

$$\widehat{V}_{t,i} = \widehat{\Omega}_i + \sum_{s=1}^{p} \widehat{A}_{s,i} \widehat{E}_{t-s,i} + \sum_{s=1}^{p} \widehat{\Theta}_{s,i} \widehat{I}_{t-s,i} \widehat{E}_{t-s,i} + \sum_{s=1}^{q} \widehat{B}_{s,i} \widehat{V}_{t-s,i}$$

M. Božović Market risk management under multivariate EVT

GARCH Filtering

• Conditional variance: GJR-GARCH(p,q)

$$V_{t} = \Omega + \sum_{s=1}^{p} \mathbf{A}_{s} \mathbf{E}_{t-s} + \sum_{s=1}^{p} \Theta_{s} \mathbf{I}_{t-s} \mathbf{E}_{t-s} + \sum_{s=1}^{q} \mathbf{B}_{s} \mathbf{V}_{t-s}$$
$$\mathbf{E}_{t} := \varepsilon_{t} \varepsilon_{t}'$$
$$\mathbf{I}_{t} := \operatorname{diag}(\operatorname{sgn}(-\varepsilon_{t,1})_{+}, \operatorname{sgn}(-\varepsilon_{t,2})_{+}, \ldots, \operatorname{sgn}(-\varepsilon_{t,n})_{+})$$

- Make transformation from returns to principal components.
- Estimate n separate univariate GJR-GARCH(p, q) models:

$$\widehat{V}_{t,i} = \widehat{\Omega}_i + \sum_{s=1}^{p} \widehat{A}_{s,i} \widehat{E}_{t-s,i} + \sum_{s=1}^{p} \widehat{\Theta}_{s,i} \widehat{I}_{t-s,i} \widehat{E}_{t-s,i} + \sum_{s=1}^{q} \widehat{B}_{s,i} \widehat{V}_{t-s,i}$$

Forecasting

 Confidence interval for the value of *i*-th principal component, *h* steps ahead:

$$z_{t+h,i}^{\pm} = F_i^{-1}(q_{\pm})\sqrt{\widehat{V}_{t+h,i}}$$

Forecast of multivariate VaR:

$$\begin{aligned} \mathbf{S}_{t'}^{\pm} &:= \ \text{diag} \left[(z_{t',1}^{\pm})^2 \ (z_{t',2}^{\pm})^2 \ \dots \ (z_{t',m}^{\pm})^2 \right] \\ \mathbf{Q}_{t'}^{\pm} &:= \ \mathbf{LS}_{t'}^{\pm} \mathbf{L}' \\ \text{VaR}^{\pm} &= \ \mathbf{a}' \mu_{t'} \pm \sqrt{\mathbf{a}' \mathbf{Q}_{t'}^{\pm} \mathbf{a}} \end{aligned}$$

• For ES just replace F_i^{-1} by $(F_i^{-1} + \beta_{\pm} - \xi_{\pm}u_{\pm})/(1 - \xi_{\pm})$.

□ > < 注 > < 注 > □ Ξ

Forecasting

 Confidence interval for the value of *i*-th principal component, *h* steps ahead:

$$z_{t+h,i}^{\pm} = F_i^{-1}(q_{\pm})\sqrt{\widehat{V}_{t+h,i}}$$

• Forecast of multivariate VaR:

$$\begin{aligned} \mathbf{S}_{t'}^{\pm} &:= \text{ diag} \left[(z_{t',1}^{\pm})^2 (z_{t',2}^{\pm})^2 \dots (z_{t',m}^{\pm})^2 \right] \\ \mathbf{Q}_{t'}^{\pm} &:= \mathbf{L} \mathbf{S}_{t'}^{\pm} \mathbf{L}' \\ \text{VaR}^{\pm} &= \mathbf{a}' \mu_{t'} \pm \sqrt{\mathbf{a}' \mathbf{Q}_{t'}^{\pm} \mathbf{a}} \end{aligned}$$

• For ES just replace F_i^{-1} by $(F_i^{-1} + \beta_{\pm} - \xi_{\pm} u_{\pm})/(1 - \xi_{\pm})$.

프 🕨 🗉 프

Data Full-Sample Estimates Backtesting

Data

- Daily returns computed from adjusted prices of Dow Jones stocks.
- DJIA composition on December 31, 2010 was used to choose the 30 constituents of the equally-weighted portfolio.
- 2401 observations in each of the series (June 14, 2001 December 31, 2010).

ヘロト ヘアト ヘビト ヘビト

æ

Data Full-Sample Estimates Backtesting

Data

M. Božović Market risk management under multivariate EVT

문 🕨 👘 🖻

Data Full-Sample Estimates Backtesting

Parameters of Univariate GP Distributions

December 31, 2010

Parameter	PC 1	PC 2	PC 3	PC 4
$\widehat{\xi}_+$	-0.1458	0.0369	0.1179	0.0829
	(0.0588)	(0.0703)	(0.0719)	(0.0564)
\widehat{eta}_+	0.5492	0.6055	0.4755	0.5598
	(0.0479)	(0.0582)	(0.0461)	(0.0481)
$\widehat{\xi}_{-}$	-0.0089	0.0859	0.0670	0.0207
	(0.0482)	(0.0679)	(0.0669)	(0.0701)
\widehat{eta}_{-}	0.6222	0.5080	0.5917	0.6354
	(0.0503)	(0.0478)	(0.0553)	(0.0609)

3

Data Full-Sample Estimates Backtesting

Fitting the Tails

First principal component

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E → ★ E →

Data Full-Sample Estimates Backtesting

Fitting the Tails

Second principal component

M. Božović Market risk management under multivariate EVT

Data Full-Sample Estimates Backtesting

Fitting the Tails

Third principal component

M. Božović Market risk management under multivariate EVT

A D > A P >

Data Full-Sample Estimates Backtesting

Fitting the Tails

Fourth principal component

M. Božović Market risk management under multivariate EVT

A D > A P >

Data Full-Sample Estimates Backtesting

VaR and ES Forecasts

December 31, 2010

Upper tail					
CL	0.900	0.950	0.990	0.995	0.999
VaR	0.6431	0.8288	1.1975	1.3334	1.6058
ES	0.8901	1.0534	1.3789	1.4994	1.7428
Lower tail					

CL	0.900	0.950	0.990	0.995	0.999
VaR	-0.6173	-0.8366	-1.3416	-1.5574	-2.0546
ES	-0.9322	-1.1500	-1.6515	-1.8659	-2.3601

ヘロト 人間 とくほとくほとう

∃ <2 <</p>

Data Full-Sample Estimates Backtesting

Backtesting Setup

- Last 1000 observations are chosen as out-of-the-sample data.
- Expanding-window estimation of the model for each day.
- Tomorrow's VaR forecasts compared with tomorrow's actual return on the portfolio.

くロト (過) (目) (日)

æ

Data Full-Sample Estimates Backtesting

Number of VaR Violations by Quantile: Upper Tail

Method	Number of violations				
CL	0.900	0.950	0.990	0.995	0.999
HS mv Normal mv Student mv EVT	374 97 106 104	307 42 42 45	195 13 9 13	143 5 5 6	89 2 0 1
Expected	100	50	10	5	1

M. Božović Market risk management under multivariate EVT

イロト 不得 とくほ とくほとう

3

Data Full-Sample Estimates Backtesting

Number of VaR Violations by Quantile: Lower Tail

Method	Number of violations				
CL	0.900	0.950	0.990	0.995	0.999
HS	321	279	202	163	108
mv Normal	106	68	26	12	5
mv Student	105	68	23	11	4
mv EVT	110	68	13	5	1
				_	
Expected	100	50	10	5	1

ヘロト 人間 ト ヘヨト ヘヨト

3

Data Full-Sample Estimates Backtesting

Pearson's Test

Method	Lower tail	Upper tail
HS	12420.2 (0.0000)	9029.60 (0.0000)
mv Normal	37.4700 (0.0000)	6.5850 (0.2534)
mv Student	25.0828 (0.0001)	6.6350 (0.2492)
mv EVT	8.8161 (0.1166)	4.2878 (0.5088)

(p-values in parentheses.)

ヘロン 人間 とくほ とくほ とう

M. Božović Market risk management under multivariate EVT

Summary of the Method

M. Božović Market risk management under multivariate EVT

(신문) (문)

Conclusion

- The proposed approach employs the notion that some key results of the univariate EVT can be applied separately to a **set of orthogonal i.i.d. random variables**.
- Such random variables can be constructed from the principal components of GARCH conditional residuals of a multivariate return series.
- The approach yields **more precise VaR and ES forecasts** than conventional methods based on historical simulation, conditional normality or conditional t-distribution, without losing efficiency.

★ E ► ★ E ►