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Comments (Part 1)...

• Better description of the Filtering subsection on pages 17-20: not very

clear when and where the PCA is applied to.

• Describe better the relationship with the Orthogonal-GARCH model,

which it is the natural benchmark and direct competitor to your

model and therefore deserves more space.

• Consider also the GO-GARCH model by Van der Weide (2002)...

• ...(if you need to save time in code programming, there is the recent

nice R package gogarch by Bernhard Pfaff)
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Brief Review of GOGARCH models

Van der Weide (2002) points out that the orthogonality condition implicitly

assumed in the OGARCH model is very restrictive and raises the question “if a

linkage with a set of uncorrelated economic components exists, why should the

associated matrix be orthogonal ?“. Therefore, if we assume that

Yt|Ft−1 ∼ n(0,Vt)

the observed economic process Yt is governed by a linear combination of

independent economic components {ft}

Yt = Zft

where ft are uncorrelated components, whereas |Z| 6= 0. The unobserved

components are normalized such that:

E[ftf
′
t ] = In

V = E[YtY
′
t ] = ZZ′

Vt = Et−1[YtY
′
t ] = ZEt−1[ftf

′
t ]Z

′ = ZHtZ
′

Ht = diag{h1,t, . . . , hn,t}
hi,t = (1 − α1 − βi) + αiy

2
i,t−i + βihi,t−1 i = 1, . . . , n

V = E[Vt] = ZHZ′, H diagonal
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Brief Review of GOGARCH models

The diagonal decomposition of the unconditional covariance matrix is given by:

V = PΛP′

where the orthogonal matrix P, which is the O-GARCH estimator for Z, is only

guaranteed to coincide with Z, when the diagonal elements of H are all distinct.

Suppose that H = I, then we have that

V = E[Vt] = ZIZ′ = ZZ′

The matrix Z is no longer identified by the eigenvector matrix of V as for every

orthogonal matrix Q we have

(ZQ)(ZQ)′ = I

The matrix Z is well identified when conditional information is taken into

account. Based on singular value decomposition, it follows that

PΛ1/2U0 = Z, where the estimator U of U0 has |U| = 1

The matrices P and Λ have
n(n−1)

2
and n parameters, respectively, so we have

n2 parameters for the invertible matrix Z. The matrices P and Λ will be

estimated by means of unconditional information, as they will be extracted from

the sample covariance matrix V, which has
n(n+1)

2
parameters.
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Brief Review of GOGARCH models

Instead, conditional information is required to estimate U0, where we have
n(n−1)

2
free parameters. The O-GARCH model (when m = n) corresponds then

to the particular choice U = In.

The orthogonal matrix U0 is parameterized by means of rotation matrices.

Gij(θij), (n × n), i, j = 1, 2, . . . , n:

Gij(θij) = {gij} grr = gss = cos(θij)

gii = 1 i = 1, . . . , n i 6= r, s

gsr = − sin(θij) grs = sin(θij)

and all other elements are zero.

Example: n = 3,

G12 =





cos(θ12) sin(θ12) 0

− sin(θ12) cos(θ12) 0

0 0 1



 G13 =





cos(θ13) 0 sin(θ13)

0 1 0

− sin(θ13) 0 cos(θ13)





and G23 has the block with cos(θ23) and sin sin(θ23) functions in the right low

corner. The n(n − 1)/2 rotation angles are parameters to be estimated.
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Brief Review of GOGARCH models

Every n-dimensional orthogonal matrix U with det(U) = 1 can be represented as

a product of
n(n−1)

2
rotation matrices:

U =
∏

i<j

Gij(θij) − π ≤ θij ≤ π

Gij(θij) performs a rotation in the plane spanned by the i-th and the j-th

vectors of the canonical basis of Rn over an angle δij . In compact notation, for

n = 3, we have U = G12G13G23.

The implied conditional correlation matrix can be expressed as follows:

Rt = D
−1
t VtD

−1
t

Dt = (Vt ⊙ Im)1/2

For example, for n = 2, we would have

Z =



 1 0

cos θ sin θ




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Brief Review of GOGARCH models

so that the conditional correlations matrix is:

Rt = D
−1
t VtD

−1
t

= D
−1
t ZHtZ

′D
−1
t

=



 h
−1/2
1t 0

0 h
−1/2
2t







 1 0

cos θ sin θ







 h1t h12t

h12t h2t



 ×



 1 cos θ

0 sin θ







 h
−1/2
1t 0

0 h
−1/2
2t





and

ρt =
Covt−1(y1t, y2t)√

V art−1(y1t)
√

V art−1(y2t)
=

h1t cos (θ)
√

h1t

√
h1t cos2 (θ) + h2t sin2 (θ)

=
cos (θ)

√
cos2 (θ) + h1t

h2t

sin2 (θ)
=

1
√

1 + zt tan2 (θ)

where zt = h1t

h2t

.
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Brief Review of GOGARCH models

ESTIMATION : Let define (α′, β′, θ′)′ the parameters to be estimated by means

of the conditional information. Then

α = (α1, . . . , αn) β = (β1, . . . , βn) θ = (θ1, . . . , θm), m =
n(n − 1)

2

The log-likelihood per each observation t can be expressed:

lt = −1

2

(
n log(2π) + log |Vt| + Y ′

t V
−1
t Yt

)

= −1

2

(
n log(2π) + log |ZθHtZθ| + Y ′

t (ZθHtZ
′
θ)−1Yt

)

= −1

2

(
n log(2π) + log |ZθZ

′
θ| + log |Ht| + Y ′

t (ZθHtZ
′
θ)−1Yt

)

while the global log-likelihood is given by log LT =
∑

t lt. The estimation of this

model can be performed in two steps:

1. Estimate P and Λ from the sample covariance matrix, so to obtain:

V̂ = P̂Λ̂P̂′

Z = P̂Λ̂1/2U, where U =
∏

i<j

Gij(θij) − π ≤ θij ≤ π

2. Estimate (α′, β′, θ′)′ by maximizing the log LT .

8



Comments (Part 2)...

• Backtesting section need to improved : consider also the Christoffersen’s

(1998) conditional coverage test , which simultaneously examines if the

total number of failures is equal to the expected one and the VaR failure

process is independently distributed. The statistic is computed as follows:

LRCC = −2 ln[(1−p)T−NpN ]+2 ln[(1−π01)
n00πn01

01 (1−π11)
n10πn11

11 ] (1)

where nij is the number of observations with value i followed by j for

i, j = 0, 1 and

πij =
nij∑
j nij

(2)

are the corresponding probabilities, while N are the losses in excess of VaR

out of T observations. Under the H0, this test is distributed as a χ2(2).

• Compare the different multivariate models by looking at their VaR forecasts

by using the Hansen’s Superior Predictive Ability (SPA) test (2005)

together with Giacomini and Komunjer (2005) asymmetric loss function....
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(Very) Brief Review of SPA test for VaR backtesting

The Hansen’s (2005) Superior Predictive Ability (SPA) test compares the

performances of two or more forecasting models, by evaluating the forecasts with

a pre-specified loss function. The ’best’ forecast model is the model that produces

the smallest expected loss.

The SPA tests for the best standardized forecasting performance with respect to

a benchmark model, and the null hypothesis is that none of the competing

models is better than the benchmark one.

Since the object of interest is the conditional p-quantile of the portfolio loss

distribution, we use the asymmetric linear loss function proposed in

Gonzalez-Rivera et al. (2006) and Giacomini and Komunjer (2005), and defined

as

Tp(et+1) ≡ (p − 1(et+1 < 0)et+1 (3)

where et+1 = Lt+1 − ̂V aRt+1|t, 1(·) is the indicator function, Lt+1 is the realized

loss, while ̂V aRt+1|t is the VaR forecast at time t + 1 on information available at

time t. See also Fantazzini (2009) for a recent application.
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Comments (Part 3)

• Attention in your final comments in the empirical section. You say on page

47: “The results of the Pearson’s test for the currency portfolio...show that

models based on conditionally normal or t-distributed residuals, as well as

the HS model, can be rejected in favor of the proposed multivariate EVT

alternative.”

I am sorry, but for what I read on table 10 this is not true

Moreover, for extreme quantiles (99% and 99.9%), t and EV T have almost

identical out-of-sample performances.

⇒ However this is case for the four FX rates up to 2008. In the updated

version of the paper, considering Dow Jones stocks up to the end of 2010,

EVT is much better and seems to statistically outperform the competitors.
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