Agency, Firm Growth, and Managerial Turnover

Ron Anderson, M. Cecilia Bustamante, Stéphane Guibaud London School of Economics

Second International Moscow Finance Conference ICEF, November 2012

Motivation: Firm growth and managerial change

- Firm growth sometimes involves major changes.
 - In technology/ product market/ organization/ ownership structure.
- The incumbent manager may not have the skills that are needed to implement value-enhancing transformations of the firm.
- A change of management is sometimes required to create value.
 - We bring this idea into a dynamic moral hazard model of the firm.

This paper

- ► We analyze:
 - how growth prospects affect incentive provision;
 - how agency problem affects realized firm growth.
- We introduce exogenous, stochastic growth opportunities in a standard dynamic moral hazard model.
- Baseline assumption: taking up a growth opportunity entails a change of management.
- Extension: the firm can either grow with the incumbent or with a new manager, possibly at different costs.

Main results from the baseline model

- **Turnover:** to provide incentives or to grow.
 - Turnover rate increases with the severity of moral hazard, and with the likelihood of growth opportunities.
- Compensation: optimal scheme can be implemented with a system of deferred compensation credit and bonuses.
 - Compensation is more front-loaded when the agency problem is less severe, and when growth opportunities are more frequent.
 - Role for severance pay depends on the contractibility of growth opportunities.
- Realized growth: depends both on exogenous growth potential and severity of moral hazard.
 - Valuable growth opportunities may be forsaken following periods of good performance.
- Inefficiency: Each contract is designed ignoring its impact on future managers.

Related literature

- Managerial economics
 - Penrose (1959), Roberts (2004)
- Matching between executives and firm characteristics
 - Gabaix & Landier (2008), Pan (2010), Eisfeldt & Kuhnen (2012)
- Evidence on growth-induced turnover
 - Murphy and Zimmerman (1993), Kaplan et al. (2009), Jenter and Lewellen (2012)
- Dynamic agency literature
 - Without growth: BMPR (2007), DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007)
 - Contractible investment: BMRV (2010), Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007), DeMarzo et al. (2011), Philippon and Sannikov (2011)
 - Non-contractible growth: He (2008)
 - Managerial turnover: Spear and Wang (2005), Inderst and Mueller (2010), Garrett and Pavan (2012).

Model

- Firm owned by outside investor (principal), and run by a sequence of managers (agents).
- Firm generates stream of risky cashflows Y_t over t = 1, ..., T.
 - We will focus on the stationary limit as $T \to \infty$.
- The manager can underreport cashflows.
 - He gets $\lambda \leq 1$ per unit of diverted cashflow.
- Principal and agents are risk neutral.
 - Discount rates r and $\rho > r$, respectively.

Technology

Cashflows proportional to the current scale of the firm

$$Y_t = \Phi_t y_t.$$

- Scaled cashflows $\{y_t\}$ i.i.d., $\mathbb{E}(y_t) = \mu$.
- Stochastic arrival of growth opportunities.
 - Each period, with probability q the firm gets an opportunity to increase its scale Φ by a factor (1 + γ).
 - Proportional cost $\chi \ge 0$.
- Growth opportunities are observable, verifiable and contractible.
 - Notation: $\theta = G$ if growth opportunity available, otherwise $\theta = N$.

Managerial replacement

- In every period, the incumbent manager can be fired and replaced by a new one.
 - Proportional replacement cost $\kappa > 0$.
 - Manager's continuation value upon dismissal normalized to zero.
- Firm must change its management in order to grow.
 - We relax this assumption in the extension.
- One possible interpretation of growth opportunities:
 - With probability q, the firm finds a new manager who could generate a permanent increase in productivity.

First best

- Retain manager when $\theta = N$.
 - $\kappa > 0 \rightarrow$ termination is inefficient.
- Replace and grow when $\theta = G$.
 - ▶ We assume growth-cum-replacement is efficient.

(日) (雪) (ヨ) (ヨ) (ヨ)

9/26

 Sequence of contracts: A new contract is established each time a new manager is hired.

10/26

- Standard assumptions:
 - Investor has deep pockets, agents have limited liability.
 - Full commitment.
 - No private saving by the agent.

Intra-period timing

Recursive approach

History up to time t summarized by

- Firm scale Φ_t ;
- Agent's expected discounted payoff W_t.

• Let $B(\Phi_t, W_t)$ the principal's value under the optimal contract.

Homogeneity:

 $B(\Phi, W) = \Phi B(1, w) \equiv \Phi b(w), \text{ for } w \equiv W/\Phi.$

Key state variable: agent's scale-adjusted expected payoff w.

Intra-period value functions

Preview of the optimal contract

▶ The agent's "promise" w is adjusted in response to

14/26

- Cashflow shocks;
- Growth opportunity realizations.
- Three threshold values:
 - Dismissal thresholds <u>w_N</u> and <u>w_G</u>;
 - Bonus threshold w.

Cashflow sensitivity

Adjustment of agent's promise to cashflow realization:

$$\tilde{w}(y) = w + \lambda(y - \mu).$$

This guarantees that the agent reports cashflows truthfully.

- Limited liability constraint $\tilde{w}(y) \ge 0$ requires $w \ge \lambda(\mu y_{\min})$.
 - An agent cannot start a period with a promise that is too small.
 - This will lead to inefficient replacement after poor performance.

On-the-job compensation

Simple tradeoff between present vs. deferred compensation.

- Benefit from deferred compensation: avoid inefficient turnover;
- Cost of deferred compensation: agent is more impatient.
- This tradeoff pins down the bonus threshold \overline{w} .
 - When the agent's promise w at the compensation stage is above w̄, he receives w − w̄.
 - In line with the use of performance milestones and bonuses documented by Murphy (2001).
- Bonus threshold is decreasing with respect to q.
 - Increasing q is like making the agent more impatient.

Principal's continuation values upon replacement

Principal's continuation values upon replacement

In the absence of a growth opportunity

$$\ell_N = e^{-r} b^y(w_0) - \kappa.$$

Principal's continuation values upon replacement

In the absence of a growth opportunity

$$\ell_N = e^{-r} b^y(w_0) - \kappa.$$

When a growth opportunity is available

$$\ell_G = e^{-r}(1+\gamma)b^{y}(w_0) - (\kappa+\chi). \qquad (>\ell_N)$$

Replacement decision

Inefficient turnover

Efficient turnover — High growth firms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Efficient turnover — Low growth firms

Efficient turnover — Low growth firms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Efficient turnover — Low growth firms

High growth vs. Low growth firms

What does it take for managerial entrenchment not to arise and impede growth?

- High growth firms have a steady flow of good opportunities for expanding and improving productivity (high q and γ).
- They manage transitions well (low κ and χ).
- They keep agency problems under control (low λ).
 - Better monitoring can resolve the entrenchment problem.

Adjustment in response to growth opportunity realization

- ► For a given post-cashflow promise w, the contract specifies contingent continuation promises w_G and w_N.
 - Must satisfy $qw_G + (1 q)w_N = w$, and $w_G, w_N \ge 0$.
- High growth firms set $w_G = 0$ and $w_N = w/(1-q)$.
 - Better reduce the probability of inefficient turnover than give cash to a departing agent.
 - Corollary: High growth firms pay zero severance.
- ► In low growth firms, the choice of (w_G, w_N) affects both the probability of inefficient and efficient turnover.

Growth-contingent promises in low growth firms

24 / 26

When growth opportunities are non-contractible

When the manager privately observes the arrival of growth opportunities, positive severance can arise.

Truth telling requires

 $w_G \geq w_N$.

The principal optimally sets

$$w_G = w_N = w$$
.

 \Rightarrow High growth firms give severance pay upon growth $s_G(w) = w$.

- Severance indexed on past performance.
- Potential explanation for the finding of Yermack (2006), who documents widespread use of severance for departing CEOs.

Takeaways

• Managerial turnover.

Used to provide incentives or to grow.

Managerial compensation.

- More front-loading when growth-induced turnover is more likely.
- Severance: not used, unless if required to incentivize manager to reveal private information about arrival of growth opportunity.

Firm growth.

- Firms may pass up value-enhancing opportunities after periods of good performance.
- Better monitoring can alleviate the entrenchment problem.

Another inefficiency.

The design of each contract ignores its impact on future managers.