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Abstract 

A popular measure of liquidity – the indirect measure of full transaction costs introduced in 

Lesmond et al. (1999) – is known to be significantly upward biased. We show that the bias stems 

from the mistreatment of large countercyclical idiosyncratic shocks in individual stock returns. 

We suggest a modification, which applies a Generalized Extreme Value distribution to capture 

such shocks, and, with help of Monte-Carlo simulations, find that our approach fully eliminates 

bias under a normal distribution assumption and significantly diminishes bias under fatter tails. 

Using a sample of S&P 500 constituent stocks we show that our modified estimate is much more 

precise than the Lesmond et al. measure (1999). 
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I. Introduction  

Being able to correctly assess liquidity of a financial market is extremely valuable from both 

theoretical and practical points of view, as liquidity is a crucial factor in asset pricing, the most 

important objective in market microstructure design, and a vital parameter in developing trading 

strategies. Nevertheless, measuring liquidity of a financial market is a challenging task, 

especially if intraday data is unavailable. But being able to utilize only daily observations 

provides for liquidity analysis of a plethora of international stock markets with tremendous 

historical depth. Goyenko et al. (2009) show that a number of indirect measures of transaction 

costs and price impact based on daily data turn out to be good proxies of true liquidity. One of 

them – Lesmond, Ogden and Trzcinka (1999, further LOT), a measure of full transaction costs –

requires only closing prices for stocks and for the market index under analysis. It exploits the 

idea that informed traders would act upon new information only if its value exceeded costs, 

incurred by trading on the information. Goyenko et al. (2009) show that this measure provides a 

reasonable correlation with benchmarks (intra-day measured effective and realized spreads), but 

considerably overshoots the benchmarks - by more than 4 percentage points - which is beyond 

the scope of fees, commissions and feasible price impact.  

We argue that this bias is due to the incorrect treatment of large countercyclical idiosyncratic 

shocks. LOT presents returns as latent returns, fully revealing changes in the stock value, minus 

transaction costs. In this context the latent return is a combination of a linear function of the 

market return and a company-specific shock. The LOT estimation approach utilizes only 

observed market returns; large idiosyncratic shocks of an opposite sign are misinterpreted as 

very large transaction costs. We show that this flaw can be corrected by a simple modification of 

the measure which would treat such shocks separately, applying a Generalized Extreme Value 

distribution. We introduce our modification and show in a simulation study that our modified 

measure does not have bias under ideal assumptions for LOT, whereas LOT is significantly 

biased. If we simulate fat-tailed latent returns our measure becomes biased, but considerably less 

than the LOT measure. Finally, empirical comparison on S&P 500 constituent stocks provides 

for superiority of our measure over LOT as a proxy for spreads. Hence, we suggest using our 

modification instead of LOT in studies involving liquidity measures, estimated based on daily 

data. The rest of the paper is structured as follows: Section 2 discusses the LOT measure and its 

bias. Section 3 introduces our modification of the measure and discusses the simulation results. 

Section 4 gives an overview of the empirical study, followed by the conclusion.   
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II.  LOT measure and its bias 

An informed investor will trade only if the value of information she possesses exceeds the 

transaction costs. Lesmond et al. (1999) propose the measure that extracts transaction costs from 

the return data. The LOT measure includes not only spread plus commission but also it reflects 

the other costs met by trader. For example, costs associated with information acquisition, 

opportunity costs, expected price impact, etc. This approach suggests that there is no change in 

price whenever the unobservable ‘true’ price does not exceed costs threshold. The model is set 

up as follows:  
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Where 
*

jtR  (the true return of firm j ) follows the market model with suppressed intercept, and 

1 2,j jα α  are the costs of selling and buying respectively. The difference 2 1j jα α−  is the measure 

of round-trip transaction costs. The model is estimated by maximizing the following likelihood 

function: 
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The corresponding log-likelihood is:  
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Where 1 2,Ω Ω  are the regions of nonzero returns with negative and positive market return 

respectively, ,φΦ  are the standard normal distribution and density functions.  

The LOT model could be biased upwards in case of relatively high idiosyncratic return variance. 

It treats observed counter-market stock price movements, which are due to idiosyncratic shocks, 

as very high transaction costs. I. e. LOT regions 1 2,Ω Ω  are defined over positive and negative 
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market returns respectively, however one may observe negative individual stock returns on a 

growing market: 

1 0,      0, 0.
jt j mt j mtjt j

R R Rβ α β= + − < > >ε  

These returns are caused by significant negative shocks which a.) override the information 

provided by the market and b.) exceed the sell costs threshold 1 jα  in absolute value, that is  

1 ,     0,  0.j mt j jt j m tR Rβ α β< − >+ >ε  

On the contrary, to minimize the error for such observation taken alone LOT approach would set 

the buy-transaction cost on an unjustifiably high level:  

( )2 1 1
ˆ ,   where 0.j j j mt jt jjt jt j mt jtR x x Rα α β β α= − = + = − + − >ε ε  

Thus such observations distort the correct estimation of buy costs pushing the estimate upwards. 

The same intuition is applied for positive stock returns on a falling market. 

The occurrence of company specific shocks prevailing over the market-wide information 

depends on the ratio of idiosyncratic volatility over the true transaction cost, as it determines the 

probability of idiosyncratic risks to overcompensate for the opposite market movement and the 

one-way transaction cost. 

We illustrate the nature of the bias simulating a feasibly calibrated latent return model, described 

in equation 3 and subsequently estimating transaction costs according to equation 5. Thereby we 

model market return series as a constant mean process with normally distributed disturbance 

term. The true latent return 
*

jtR  follows the market model with normally distributed disturbance 

term and suppressed intercept. The observed return jtR
 
is calculated according to Equation 3, 

lines 2-4. For each set of parameters we generate 1000 series with 350 observations each and 

estimate transaction costs for each run, and then average the estimates. Subsequently one of the 

parameters is changed by a small step size and the procedure is repeated for the new parameter 

set. 

The results for different values of transaction costs keeping idiosyncratic volatility fixed are 

summarized in Figure 1. LOT estimates exhibit four-fold positive bias when transaction costs are 

low. As costs increase bias reduces and ultimately becomes negative, thus the true value belongs 

to 95% confidence interval. The bias becomes insignificant when the ratio of idiosyncratic 
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volatility to transaction costs becomes close to one third (0.0025/0.007) and the frequency of 

observed zero returns exceeds 45%. 

Similar picture evolves in Figure 2, where simulation results are presented for varying 

idiosyncratic volatility while keeping the transaction costs fixed. The overshooting bias grows 

monotonically and becomes significant when the proportion of zero returns falls below 40%. The 

estimated transaction costs become finally 2.5 times larger than the true ones, when the 

idiosyncratic volatility to transaction costs ratio becomes two (0.01/0.005) at the right edge of 

the graph.  

    

Figure Figure Figure Figure 1111. Simulation results: LOT estimates vs. true transaction costs at different . Simulation results: LOT estimates vs. true transaction costs at different . Simulation results: LOT estimates vs. true transaction costs at different . Simulation results: LOT estimates vs. true transaction costs at different true true true true 

transaction costs levelstransaction costs levelstransaction costs levelstransaction costs levels 

 
The latent (‘true’) return follows the process * 0.92 0.0025= +t mt tR R z , ( )0,~ 1

t
z N , ( )4 6

2.5 1~ 0 ,8.3 10
− −× ×

mt
R N . 

Solid black line represents exogenously given true transaction costs, for each data point 1000 series were generated 

and the red line represents the mean across 1000 estimates. Dashed orange line is the proportion of zero return days 

(scaled on the right axis). Each estimation cycle from 1 to 150 the cost threshold was increased by 410−  starting from 

0.001 and ending at 0.0159, so the black solid line actually has a 45 degree slope. The diagram reads as follows: 

when the actual round-trip costs equal 0.01 the average estimate is 0.0108, and there are 63% zero return days. The 

estimation sample includes 350 observations. 
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Figure Figure Figure Figure 2222 . Simulation results: LOT estimates vs. true transaction costs at different . Simulation results: LOT estimates vs. true transaction costs at different . Simulation results: LOT estimates vs. true transaction costs at different . Simulation results: LOT estimates vs. true transaction costs at different 
ididididiosyncratic latent return variance levelsiosyncratic latent return variance levelsiosyncratic latent return variance levelsiosyncratic latent return variance levels.  

 
The green solid line represents the proportion of zero returns (scaled on the right axis).Each simulation step return 

variance increased from 
66 10−×  to 

41.05 10−×  with an increment of 
610−

.  This yields 100 steps, for each we 

estimate the model 1000 times for 350 observations. 

 

III. Modified measure and simulation results 

To address the bias described in the previous section, we develop the model that treats returns 

made on market information and idiosyncratic shocks separately. Stock j return is now defined 

over 5 regions: 
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 (4) 

whereby with regions 3Λ  and 4Λ
 
we treat the earlier ‘problem areas’.

 
By construction the 

residual term across regions 3Λ  and 4Λ  is not normally distributed. It rather represents the right 

and left tails of a distribution. Maintaining the assumption of idiosyncratic shocks we employ the 

Fisher-Tippet-Gnedenko theorem to make an inference about the distribution: 
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Theorem: Let ( )1 2, ,..., nX X X  be a sequence of i.i.d. random variables, and 

{ }1 2max , ,...,n nM X X X= . If ( ), : 0n n na b a∃ > , and ( )( ) ( )lim /n n n
n

P M b a x F x
→∞

− ≤ = , and 

( )F x  is a non-degenerate distribution, then it belongs to the Generalized Extreme Value 

distribution (either the Gumbel, the Frechet, or the Weibull family.) 

We utilize the type I extreme value (or the Gumbel) distribution for maxima in region 4Λ  and 

for minima in region 3Λ . The probability density functions for these distributions are: 
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where 3,4ε  are the residuals from the corresponding equations of system (4). Note that the shape 

parameter s  is functionally linked to the standard deviation of residuals: 6 /s εσ π= . 

The resulting likelihood function for the Generalized Extreme Value (GEV) limited dependent 

variable model is:  
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The Log-likelihood is: 
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The Gumbel distribution CDF is logarithmically concave, hence optimization of the equation (6) 

yields the global maximum. 
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Turning to simulations, we see that for the modified measure in the same parameter range as for 

LOT the bias disappears and we obtain a very precise estimate, independent of true parameter 

value (Figure 3) or idiosyncratic variance (Figure 4). 

We also examine robustness of our results to alternative residual distributions.    In order to 

capture the effect of leptokurtic distributions often observed on the real data we utilize Student’s 

t-distribution with 5, 8, 10, and 12 degrees of freedom. As one can see from the Figures 5-8 the 

GEV estimate performs better than the LOT estimate until the true costs exceed 0.013 which 

corresponds to approximately 73% of zero return days for distribution with 12 degrees of 

freedom; 0.0135 (74% of zeros) for 10 degrees of freedom; and from 0.014 (75%) and 0.0155 

(78%) for distributions with 8 and 5 degrees of freedom respectively. That is, even though with 

decreasing liquidity the bias of our measure increases, for all sensible liquidity levels it is still 

preferable to the LOT measure. 



 9

Figure Figure Figure Figure 3333. Simulation results: Simulation results: Simulation results: Simulation results: GEV estimates GEV estimates GEV estimates GEV estimates vs. truevs. truevs. truevs. true    transaction coststransaction coststransaction coststransaction costs    at different at different at different at different 
transaction costs levelstransaction costs levelstransaction costs levelstransaction costs levels.   

  

The latent (‘true’) return follows the process * 0.92 0.0025= +t mt tR R z , ( )0,~ 1
t

z N , ( )4 6
2.5 1~ 0 ,8.3 10

− −× ×
mt

R N . Solid 

black line represents exogenously given true transaction costs, for each data point 1000 series were generated and the red line 

represents the mean across 1000 estimates. Dashed orange line is the proportion of zero return days (scaled on the right axis). 

Each estimation cycle from 1 to 150 the cost threshold was increased by 410−  starting from 0.001 and ending at 0.0159, so the 

black solid line actually has a 45 degree slope. The diagram reads as follows: when the actual round-trip costs equal 0.01 the 

average estimate is 0.0108, and there are 63% zero return days. The estimation sample includes 350 observations. 

 

Figure Figure Figure Figure 4444.... Simulation results: Simulation results: Simulation results: Simulation results: GEVGEVGEVGEV    estimates vs. true transaction cestimates vs. true transaction cestimates vs. true transaction cestimates vs. true transaction costs at different osts at different osts at different osts at different 

idiosyncratic latent return variance levelsidiosyncratic latent return variance levelsidiosyncratic latent return variance levelsidiosyncratic latent return variance levels.  
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The green solid line represents the proportion of zero returns (scaled on the right axis).Each simulation step return 

variance increased from 
66 10−×  to 

41.05 10−×  with an increment of 
610−

.  This yields 100 steps, for each we 

estimate the model 1000 times for 350 observations. 

 

Figure Figure Figure Figure 5555. GEV vs. LOT estimates at different transaction . GEV vs. LOT estimates at different transaction . GEV vs. LOT estimates at different transaction . GEV vs. LOT estimates at different transaction 
costs levels, tcosts levels, tcosts levels, tcosts levels, t----dist. with 12 d.f.dist. with 12 d.f.dist. with 12 d.f.dist. with 12 d.f.  

 
 

Figure Figure Figure Figure 7777. GEV vs. . GEV vs. . GEV vs. . GEV vs. LOT estimates at different LOT estimates at different LOT estimates at different LOT estimates at different 
transaction costs levels, ttransaction costs levels, ttransaction costs levels, ttransaction costs levels, t----dist. with 10 d.fdist. with 10 d.fdist. with 10 d.fdist. with 10 d.f.   

 

Figure Figure Figure Figure 6666. GEV vs. LOT estimates at different . GEV vs. LOT estimates at different . GEV vs. LOT estimates at different . GEV vs. LOT estimates at different 
transaction costs levels, ttransaction costs levels, ttransaction costs levels, ttransaction costs levels, t----dist. with dist. with dist. with dist. with 8888    d.fd.fd.fd.f..   

 
 

Figure Figure Figure Figure 8888. GEV vs. LOT estimates at different . GEV vs. LOT estimates at different . GEV vs. LOT estimates at different . GEV vs. LOT estimates at different 
transaction costs levels, ttransaction costs levels, ttransaction costs levels, ttransaction costs levels, t----dist. wdist. wdist. wdist. with ith ith ith 5555    d.fd.fd.fd.f.. 

 

The return process is the same as in Figures 1 and 3, except that the disturbance term is t-distributed with the number of degrees 

of freedom reflected in the figure title. The step in transaction costs is 0.0005, so that there are 30 steps for each distribution 

choice. 
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III. Horserace of LOT and GEV measures on S&P 500 constituents’ stock price data 

 

We also evaluate the proposed estimation approach performing an empirical check for a sample 

of the US stock market data, since the US data is considered to be standard object of empirical 

analysis. The sample includes closing transaction, bid and ask prices for stocks included in S&P 

500 starting from January 1
st
 1993 to December 31

st
 2011. The data was obtained from the 

Center for Research in Securities Prices.  

Following Lesmond (2005) and Amihud (2002) we filter data dropping stock-years with less 

than 120 observations; daily returns greater than 50% by absolute value; and proportional spread 

values that are greater than 80% or less than zero (considering this values as the CRSP entry 

mistakes). 

 Table 1 Panel A summarizes statistics for the two transaction costs measures as well as of 

our benchmark –quoted spread - for the full sample, as well as for two subsamples, divided by 

the major tick size reform: the decimal price increment era (2002 – 2011), and to the 1/8
th

 , 1/16
th

 

era (1993 – 2000).
1
 Average and median quoted spreads for the whole sample are 59 and 21 

basis points correspondingly, this is about ten times lower, than reported by Goyenko et al (2009, 

Table 1) for the random sample of the US stocks, and corresponds to values reported for Dow 

Jones stocks in 1990-s (Goyenko et al 2009, Fig. 1). The LOT measure significantly exceeds the 

proportional spread estimates both in mean and median. The proposed GEV measure estimates 

are lower in mean than the quoted spread.  

Table 1 Panel B reports the average cross-sectional correlation of benchmark and LDV 

estimates, as well as time series correlation of the equally weighted portfolio. The average cross-

sectional GEV correlations with the benchmark are higher than those of LOT, these difference is 

significant on the 5% level for the whole sample and on the 10% level for both pre-decimal and 

decimal era sub-periods. Time series correlations also reported in Panel B are high for both 

measures, but statistically indistinguishable from one another. The cross-sectional correlations 

by year are represented in Table 2. Overall, the correlation of indirect measures with benchmark 

decline over time. For years 1999, 2000 and 2009 GEV significantly outperforms LOT, LOT 

does not significantly outperform GEV in any year. 

                                                           

1
 Both LOT and GEV models may not achieve convergence. Such cases correspond to the small number of zero 

return days. For example Table A6 in Appendix represents the descriptive statistics for bid-ask spread and 

proportion of zero return days subsamples across which the indirect measures did not converge while the spread 

quotes were available. The maximum proportion of zero return days corresponds to 7-8 days without price 

movement per year; and the mean corresponds to 2 zero return days for GEV. 
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Following Goyenko et al. (2009) we construct the series of deviations of each measure 

from spread (see Table 1 Panel C). We reveal as expected positive bias for LOT. For our 

modified measure we report negative average bias, it is much smaller in absolute value than that 

of LOT for the decimal era and larger for the 1993-2000 subperiod. We also report root mean 

squared prediction error which is lower for GEV in the full sample. The comparative 

performance in subsamples varies: in 1993-2000, where tick sizes were measured in 1/8ths and 

1/16ths of a dollar our measure has a slightly larger squared error, however in the decimal era 

subsample (2002-2011) GEV measure is about three times more precise than the LOT measure. 

To sum up, we show that our modification better captures cross-sectional variation of 

liquidity among S&P 500 stocks than LOT, as it has higher correlation with the benchmark. 

Moreover, our measure is more precise on this sample, as it has a smaller squared prediction 

error.  
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Table (1). Descriptive statistics, Correlations, Accuracy 

 1993 - 2011 2002 – 2011 Decimal Era 1993 – 2000 1/8
th

, and 1/16
th

 Era 

    Panel A Spread LOT GEV Spread LOT GEV Spread LOT GEV 

Mean  0.005942  0.009384  0.002162  0.001553  0.004712  0.000583  0.012356  0.016685  0.004753 

Median  0.002072  0.006585  0.000798  0.000836  0.003863  0.000396  0.010390  0.014007  0.003430 

Maximum  0.109456  0.106389  0.071317  0.038710  0.071000  0.014359  0.109456  0.106389  0.071317 

Minimum  0.000119  1.69E-09  4.17E-08  0.000119  1.69E-09  4.17E-08  0.000440  3.14E-09  5.57E-08 

Std. dev.  0.007901  0.009427  0.003716  0.002458  0.004480  0.000800  0.009023  0.010627 0.003943 

Obs. 8028 7953 7948 4603 4561 4563 3001 2972 2967 

          Panel B          

Cross-sectional correlation 0.570056 0.600164†  0.453941 0.483764*  0.729212 0.760826* 

(SE of average correlation) (0.00884) (0.00860)  (0.01302) (0.01272)  (0.01238) (0.01180) 

Time Series correlation 0.977102 0.875547  0.932227 0.768332  0.825434 0.519098 

(SE) (0.05160) (0.11718)  (0.16900) (0.22629)  (0.23046) (0.34894) 

         Panel C          

Mean Bias   0.003481 -0.003735   0.003158 -0.000961   0.004433 -0.007527 

Median Bias   0.002837 -0.001177   0.002685 -0.000398   0.003740 -0.006242 

Root MSPE  0.006556 0.005270  0.004936 0.001554  0.008538 0.009444 

† indicates significant difference on the 5% level and * - on the 10% level 
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Table (2). Cross-sectional correlations and standard errors in percent 

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

                    LOT 88.9 87.6 77.2 73.4 61.7 64.3 68.4 61.9 45.8 59.8 48.9 50.2 49.4 39.6 20.5 18.4 65.9 49.2 52.2 

SE 2.5 2.6 3.4 3.6 4.1 3.9 3.7 3.9 4.4 3.9 4.2 4.1 4.1 4.3 4.5 4.5 3.5 4.0 4.0 

                    
GEV 87.5 83.7 76.7 76.4 67.6 66.6 77.6* 72.6† 47.9 63.4 53.0 45.5 55.8 43.0 19.8 26.2 74.9* 57.7 44.6 

SE 2.7 3.0 3.5 3.4 3.8 3.8 3.2 3.4 4.3 3.8 4.1 4.3 3.9 4.2 4.6 4.5 3.1 3.7 4.2 

† indicates significant difference on the 5% level and * - on the 10% level 
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ConclusionConclusionConclusionConclusion    

    

We explain an upward bias in a wide-spread measure of transaction costs – Lesmond et al. 

(1999, LOT) – through the mistreatment of large idiosyncratic shocks, counter directional to the 

market. We introduce a modification which significantly outperforms LOT in simulations and on 

standard US data. This makes the use of our measure extremely advantageous for estimating 

liquidity on rather liquid markets with high idiosyncratic volatility. 
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