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Abstract

We evaluate the ability of the Lucas [25] tree and the Alvarez-Jermann [3] models, both with

homogeneous as well as heterogeneous beliefs, to generate a time series of excess returns that

displays both short-term momentum and long-term reversal, i.e., positive autocorrelation in the

short-run and negative autocorrelation in the long-run. Our analysis is based on a methodological

contribution that consists in (i) a recursive characterisation of the set of constrained Pareto

optimal allocations in economies with limited enforceability and belief heterogeneity and (ii)

an alternative decentralisation of these allocations as competitive equilibria with endogenous

borrowing constraints. We calibrate the model to U.S. data as in Alvarez and Jermann [4]. The

sign of the autocorrelations predicted by the Lucas tree model or the Alvarez-Jermann model with

correct beliefs coincide with the data for some preferences parameters. However, we find that only

the Alvarez-Jermann model with heterogeneous beliefs delivers autocorrelations that not only have

the correct sign but are also of magnitude similar to the US data when the preferences parameters

are disciplined to match both the average annual risk-free rate and equity premium.
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1 Introduction

Over the last several years, a large volume of empirical work has documented that excess returns

in the stock market appear to exhibit short-term momentum, that is positive autocorrelation, in the

short to medium run and long-term reversal, that is negative autocorrelation, in the long run (see

Moskowitz et al [26], Poterba and Summers [29] and Lo and MacKinlay [24]).

There is a tendency to interpret these properties of excess returns as a rejection of standard models

of asset pricing and so they are known as financial markets anomalies.1 Although this interpretation

might be correct, it is not apparent why standard models of asset pricing cannot generate the pattern

of autocorrelations found in the data.

In this paper we evaluate the ability of two standard general equilibrium asset pricing models

to generate a time series of excess returns that display both short-term momentum and long-term

reversal. We consider both an economy without frictions, the Lucas [25] tree model adapted to allow

for stochastic growth as in Mehra and Prescott [27], as well as an economy where credit frictions arise

due to limited enforceability, the Alvarez-Jermann [3] model. For each of them we analyse both the

case of homogeneous and heterogeneous beliefs. We say that a model’s predictions are qualitatively

accurate if the sign of the predicted autocorrelations coincide with that of their empirical counterparts

for some preferences parameters. We say that a model’s predictions are quantitatively accurate if its

predicted autocorrelations are both of the same sign and order of magnitude as in the data when

one sets the discount rate and coefficient of risk aversion to match the average annual risk-free rate

of 0.8% and equity premium of 6.18%. We calibrate the stochastic process of individual income and

aggregate growth rates of a two-agent economy to aggregate and US household data as in Alvarez

and Jermann [4]. For each case, we first ask whether its predictions are qualitatively accurate. If the

answer is positive, we study whether the model’s predictions are quantitatively accurate as well.

The autocorrelation of excess returns is zero when the expectations are computed using the so-

called equivalent martingale measure or, as we call it, the market belief. Yet, as it has been noticed

long time ago, the empirical excess returns could be autocorrelated.2 This is because (i) the empirical

autocorrelations converge to the autocorrelations computed with respect to the true probability mea-

sure and (ii) the market belief, typically, differs from the true probability measure.3 Loosely speaking,

short-term momentum and long-term reversal occurs if the conditional equity premium is pro-cyclical

in the short-run but counter-cyclical in the long-run.

We consider a pure exchange economy where the state of nature follows a finite first-order time

homogeneous Markov process. There is a finite number of infinitely-lived agents who are subjective

utility maximisers and have heterogeneous beliefs regarding the transition probability matrix.4

1Fama and French [18] suggest this interpretation as a logical possibility, while Poterba and Summers [29] argue that

these properties of excess returns should be attributed to "price fads."
2See Leroy [23] or Lucas [25], for example.
3Note that (ii) is true even if some agents have correct beliefs because the market belief adjusts the true probability

to take into account the effect of time and risk on the marginal valuation of future consumption.
4Our framework is general enough to accommodate bounded or unbounded aggregate growth and priors with and
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We first consider the Lucas tree model and its competitive equilibria (CE), i.e. full risk sharing

equilibria. Under some mild assumptions, CE prices and excess returns converge to those of an

economy where only agents with correct beliefs have positive wealth (see Sandroni [31] and Blume

and Easley [10]). Thus, we restrict attention to the case where everybody has correct beliefs.5 We find

that the predictions of the Lucas model are qualitatively accurate, its failure is only of a quantitative

nature. Indeed, the autocorrelations are of an order of magnitude smaller than in the data.

Next we consider competitive equilibria with solvency constraints (CESC) that prevent agents to

attain full risk sharing, an equilibrium concept very close to the one used in Alvarez and Jermann

[3]. Following Alvarez and Jermann [3] and Kehoe and Levine [20], we say that an allocation is

enforceable if agents would at no time be better off reverting permanently to autarky. We say that an

allocation is constrained Pareto optimal (CPO) if it is optimal within the set of enforceable allocations.

Our analysis of CESC allocations is based on a methodological contribution that complements the

techniques developed by Spear and Srivastava [32] and Abreu et al [2]. Indeed, we first provide a

complete recursive characterisation of the set of constrained Pareto optimal allocations and a version

of the principle of optimality for these economies. We also show how to decentralise a CPO allocation

as a CESC using a suitable adaptation of the methodology that Beker and Espino [5] develop to

decentralise a Pareto optimal allocation of an economy with belief heterogeneity as a CE.

When both agents have homogeneous beliefs, i.e. the Alvarez and Jermann [3] model, the pre-

dictions are qualitatively accurate. However, they are not quantitative accurate and the failure is

even starker than that of the Lucas model since not even the signs are correct. The different quan-

titative predictions of the Lucas and Alvarez and Jermann models arise because the calibrated labor

income shocks display counter-cyclical cross-sectional variance, as Krueger and Lustig [22] point out.

In particular, this counter-cyclical property of the labor income shocks makes the conditional equity

premium counter-cyclical in the short-run as in Chien and Lustig [16].

To assess the impact of belief heterogeneity on CESC, we assume agent 1 has correct beliefs and

agent 2 has dogmatic beliefs that are pessimistic about the persistency of the expansion state and

correct otherwise. The presence of solvency constraints ensures that the consumption of every agent

is bounded away from zero, i.e. both agents survive. We set the beliefs of the pessimistic agent so

that the time series of returns matches the historical short-term momentum and we found that the

model does a very good job explaining long-term reversal as well.

The main lesson is that if one insists in that some agents must eventually have correct beliefs,

then perpetual pessimism, belief heterogeneity and limited enforceability are three ingredients that

together give a quantitative explanation for short-term momentum and long-term reversal in a general

equilibrium setting. Pessimism makes the market more pessimistic at expansions than at recessions

which makes the conditional equity premium pro-cyclical in the short-run. This is the main driving

force to explain both short-term momentum and long-term reversal. Belief heterogeneity and limited

enforceability make the welfare weights change as time and uncertainty unfold and so it increases

without the true transition matrix in its support. If some agent has the truth in his prior’s support but others do not,

belief heterogeneity does not vanish.
5Note that since we are interested in asymptotic results, this restriction is without loss in generality
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the volatility of the stochastic discount factor. This excess volatility does not vanish because limited

enforceability makes the pessimistic agent survive. Consequently, the average equity premium can be

matched for levels of risk aversion more moderate than those that would be necessary in an otherwise

identical economy without limited enforceability or belief heterogeneity.

We are not the first to use pessimism to explain asset pricing puzzles in general equilibrium.

However, most of the previous papers are representative agent models. Abel [1], assumes the belief of

the representative agent is characterised by pessimism and doubt and he shows that these effects reduce

the risk-free rate and increase the equity premium. Cogley and Sargent [13] focus on the quantitative

effects of pessimism on the equity premium. However, neither of these authors tackle the effect of

pessimism on the autocorrelations of excess returns. Cecchetti et al [12] explain several anomalies,

including long-term reversal, but they are silent about short-term momentum. Our approach differs

from theirs in one important aspect. In their model the stochastic discount factor has a non stationary

behaviour because they assume not only that the representative agent is pessimist but also that she

believes the endowment growth follows a peculiar non-stationary process. In our model, instead,

the agents correctly believe the true process is stationary while the non stationary behaviour of the

stochastic discount factor arises endogenously due to changes in the wealth distribution.

Cogley and Sargent [14] combine both pessimism and belief heterogeneity but they focus only on

their effect on the market price of risk on a finite sample. Although the pessimistic agent ends up

learning, they show that, for a plausible calibration of their model, it takes a long time for the effect

of large pessimism on CE asset prices to be erased unless the agents with correct beliefs own a large

fraction of the initial wealth.

Finally, Cao [11] and Cogley et al [15] also combine the same three ingredients to study the

dynamics of asset prices. Cao focuses on survival and excess volatility of asset prices. Cogley et al

focus on the wealth dynamics of a bond economy when solvency constraints are exogenously given

and proportional to the agents’ income.

This paper is organised as follows. Section 2, describes the model. Our methodological contribu-

tion is introduced in sections 3 and 4. Section 5 provides a statistical and economic characterisation

of short-term momentum and long-term reversal. In section 6, we evaluate the ability of CE and

CESC allocations to generate short-term momentum and long-term reversal. Section 7 provides a

final discussion. Proofs are gathered in the Appendix.

2 The Model

We consider a one-good infinite horizon pure exchange stochastic economy. In this section we establish

the basic notation and describe the main assumptions.

2.1 The Environment

Time is discrete and indexed by t = 0, 1, 2, .... The set of possible states of nature is S ≡ {1, ...,K}.
The state of nature at date zero is known and denoted by s0 ∈ S. The set of partial histories up to date
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t ≥ 1, St, is the t−Cartesian product of S with typical element st = (s1, ..., st). S∞ is the set of infinite

sequences of the states of nature and s = (s1, s2, · · · ), called a path, is a typical element. For every

partial history st, t ≥ 1, a cylinder with base on st is the set C(st) ≡ {s̃ ∈ S∞ : s̃ = (st, s̃t+1, · · · )}
of all paths whose t initial elements coincide with st. Let Ft be the σ-algebra that consists of all

finite unions of the sets C(st). The σ-algebras Ft define a filtration F0 ⊂ ... ⊂ Ft ⊂ ... ⊂ F where

F0 ≡ {∅, S∞} is the trivial σ−algebra and F is the σ-algebra generated by the algebra
⋃∞
t=1 Ft.

Let ∆K−1 be the K − 1 dimensional unit simplex in <K . We say that π : S × S → [0, 1] is

a transition probability matrix if π(· |ξ ) ∈ ∆K−1 for all ξ ∈ S. If {st} follows a first-order time-

homogeneous Markov process with a K × K transition probability matrix π, then Pπ denotes the

probability measure on (S∞,F) uniquely induced by π. Let ΠK denote the set of K ×K transition

probability matrices and ΠK
++ be the subset consisting of all K ×K transitions probability matrices

with strictly positive entries. B
(
ΠK
)
are the corresponding Borel sets and P(ΠK) is the set of

probability measures on
(
ΠK ,B

(
ΠK
))
. The following assumption will be used for the characterisation

of the dynamics in Sections 5-6 where we need to be explicit about the true data generating process

(henceforth, dgp).

A.0 The true dgp is given by Pπ
∗
for some π∗ ∈ ΠK

++.

Definition. A state of nature ξ is strongly persistent if π∗ (ξ| ξ) ≥ ψ∗ (ξ), where ψ∗ is the invariant

distribution associated with π∗

2.2 The Economy

There is a single perishable consumption good every period. The economy is populated by I (types

of) infinitely-lived agents where i ∈ I = {1, ..., I} denotes an agent’s name. A consumption plan

is a sequence {ct}∞t=0 such that c0 ∈ R+ and ct : S∞ → R+ is Ft−measurable for all t ≥ 1 and

sup(t,s) ct(s) <∞. Given s0, the agent’s consumption set, C(s0), is the set of all consumption plans.

2.2.1 Beliefs

Pi is the probability measure on (S∞,F) that represents agent i’s prior. Throughout this paper, we

assume that each agent i assigns positive probability to every partial history st, i.e., Pi(C(st)) > 0

for all st. We say that agent i believes the dgp consists of draws from a (fixed) transition probability

matrix if for every event A ∈ F

Pi (A) =

∫
ΠK

Pπ (A)µi,0 (dπ) ,

where µi,0 ∈ P(ΠK) is agent i’s belief over the unknown transition probability matrix. Let µ0 ≡
(µ1,0, ..., µI,0) denote the collection of beliefs of the agents at date zero.

A1 Agent i believes the true dgp consists of draws from a transition probability matrix and either
a. µi,0 has countable support.
b. µi,0 has density fi,0 with respect to Lebesgue that is continuous.
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Assumption A1 implies that posterior beliefs depend on the history only through the prior. Indeed,

Bayes’ rule implies that beliefs evolve according to

µi,st+1 (D) =

∫
D
π(st+1 |st ) µi,st (dπ)∫

ΠK
π(st+1 |st ) µi,st (dπ)

for any D ∈ B(ΠK), (1)

where µi,s0 = µi,0 is given at date 0.

The following assumptions when coupled with A1, impose more structure on the agent’s prior.6

A2 Agent i has the true transition probability matrix in the support of her prior. That is, either
a. µi,0 (π∗) > 0 if µi,0 has countable support.
b. fi,0 (π∗) > 0 if µi,0 has density fi,0 with respect to Lebesgue.

We say that agent i is dogmatic if his belief is a point mass probability measure on some πi ∈ ΠK ,

i.e., µπii : B
(
ΠK
)
→ [0, 1] is given by

µπii (B) ≡

 1 if πi ∈ B

0 otherwise.

Agents with dogmatic beliefs satisfy A.1 but they satisfy A.2 only if πi = π∗. Let π = (π1, ..., πI)

and µπ ≡ (µπ1
1 , ..., µπII ). The following assumption defines a large class of heterogeneous dogmatic

beliefs that we use In Proposition 4.

A3 There exists ξ∗ ∈ S such that π1(ξ∗|ξ∗∗)
π2(ξ∗|ξ∗∗)

π1(ξ∗∗|ξ∗)
π2(ξ∗∗|ξ∗) 6= 1 for some ξ∗∗ ∈ S.

2.2.2 Preferences

Agents’ preferences have a subjective expected utility representation that is time separable, i.e.,

for every ci ∈ C(s0) her preferences are represented by

UPii (ci) = EPi

( ∞∑
t=0

ρi,t ui(ci,t)

)
,

where ui : R+ → {−∞} ∪ R is continuously differentiable, strictly increasing, strictly concave and

lim
x→0

∂ui(x)
∂x = +∞ and ρi,t is agent i’s multi-period stochastic discount factor recursively defined by

ρi,t+1(s) = β(st, µi,st)ρi,t(s) for all t and s,

where ρi,0(s0) ∈ (0, 1) is given and β(ξ, ·) : P(ΠK) → (0, 1) is continuous for all ξ and uniformly

bounded above by β ∈ (0, 1).7,8 If agent i has dogmatic beliefs, we write βi(ξ) ≡ β(ξ, µπii ) for all ξ.

2.3 Feasibility, Enforceability and Constrained Optimality

Agent i’s endowment at date t is a time-homogeneous function of the current state of nature that we

denote by yi(ξ) > 0 for all ξ. The aggregate endowment is denoted by y(ξ) ≡
∑I
i=1 yi(ξ) ≤ y < ∞.

Let yi,t (s) ≡ yi (st) and yt (s) ≡ y(st).
6We adopt the convention of writing µi ({π∗}) as µi (π∗).
7We allow for utility functions unbounded from below.
8In the standard case where β(ξ, µ) = β for all ξ, ρi,t(s) = βt for all t ≥ 1 and s.
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Given a consumption plan ci ∈ C(s0), define

Ui(ci)(s
t) = ui(ci(s

t)) + β(st, µi,st)
∑

ξ′
πµi,st (ξ

′ |st )Ui(ci)(st, ξ′) for all t and st,

where πµi,st (ξ
′ |st ) =

∫
π(ξ′ |st ) µi,(st,ξ′) (dπ) where µi,(st,ξ′) is obtained from µi,st using (1). When ci

is the endowment of agent i, we simply write Ui(st, µi,st) to make clear that the utility attained from

consuming the individual endowment forever can be expressed as a function only of st and µi,st .

Let Y (s0) be the set of feasible allocations. Given (s0, µ0), a feasible allocation {ci}Ii=1 is enforce-

able if Ui(ci)(st) ≥ Ui(st, µi,st) for all t, st and i. Let Y E(s0, µ0) ⊂ Y (s0) be the set of enforceable

allocations. A feasible allocation {ci}Ii=1 is Pareto optimal (PO) if there is no alternative feasi-

ble allocation {c̃i}Ii=1 ∈ Y (s0) such that UPii (c̃i) > UPii (ci) for all i. An enforceable allocation

{ci}Ii=1 is constrained Pareto optimal (CPO) given (s0, µ0) if there is no other enforceable allocation

{c̃i}Ii=1 ∈ Y E (s0, µ0) such that UPii (c̃i) > UPii (ci) for all i.

Given (s0, µ0), define the utility possibility correspondence by

U(s0, µ0) = {ũ ∈ RI : ∃ {ci}Ii=1 ∈ Y (s0) , ũi ≤ UPii (ci) ∀i},

and the enforceable utility possibility correspondence by

UE(s0, µ0) = {ũ ∈ RI : ∃ {ci}Ii=1 ∈ Y
E(s0, µ0), Ui(s0, µ0) ≤ ũi ≤ UPii (ci) ∀i}.

Given (s0, µ0), the set of CPO allocations can be characterised as the solution to the following

planner’s problem with welfare weights α ∈ RI+:

v∗(s0, α, µ0) ≡ sup
{ci}Ii=1∈Y E(s0,µ0)

I∑
i=1

αi E
Pi

(∑
t

ρi,t ui(ci,t)

)
. (2)

It is straightforward to prove that (2) can be rewritten as

v∗(s0, α, µ0) = sup
ũ ∈ UE(s0,µ0)

I∑
i=1

αi ũi. (3)

The maximum is attained since the objective function is continuous and the constraint set is compact.

2.3.1 An Economy with Aggregate Growth

Let g : S → R+ and εi : S → (0, 1) denote the (stochastic) growth rate and income share of agent i,

respectively. Then,

yt(s) = g(st) yt−1(s) and yi,t(s) = εi(st) yt(s) for all i, t and s. (4)

Definition. An economy where the aggregate endowment satisfies (4), the discount factor is non-

stochastic and preferences display constant relative risk aversion is called a growth economy. A baseline

growth economy is a growth economy where I = 2, K = 4, g (1) = g (3) and g (2) = g (4).

Our specification of the discount factor let us accommodate growth as in Alvarez and Jermann [3].

Indeed, we now argue that the set of enforceable allocations of a growth economy can be characterised

by studying the set of enforceable allocations of an economy with constant aggregate endowment and

an stochastic discount factor.
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Let ĉi,t (s) = ci,t (s) /yt (s), ŷi,t(s) = yi,t(s)/yt(s) = εi(st) for all i, s and t. Notice that ŷt(s) =∑I
i=1 ŷi,t(s) = 1 for all s and t. Then,

Ûi(ĉi)(s
t) = ui(ĉi,t(s)) + β̂(st, µi,st)

∑
ξ′
π̂µi,st (ξ

′ |st )Ûi(ĉi)(st, ξ′) for all t and s,
where

π̂µi,st (ξ
′ |st ) =

πµi,st (ξ
′ |st )g(ξ′)1−σ∑

ξ̃ πµi,st (ξ̃ |st )g(ξ̃)1−σ
and β̂(st, µi,st) = β

∑
ξ′

πµi,st (ξ
′ |st )g(ξ′)1−σ.

As in Mehra and Prescott [27], expected utility is well defined if

sup
ξ,µi

β∑
ξ′

πµi(ξ
′ |ξ )g(ξ′)1−σ

 < 1. (5)

Let ĉi ≡ {ĉi,t}∞t=0 for all i and ŷ ≡ {ŷt}∞t=0. We define the normalised stationary economy

associated to the growth economy by
(
ŷ,
{
ĉi, Ûi

}
i∈I

)
.

Finally, {ci}Ii=1 is an enforceable allocation in the growth economy iff {ĉi}Ii=1 is an enforceable

allocation in the normalised stationary economy. Also, the preference orderings are identical in the

two corresponding economies and the discount factor is stochastic if and only if the growth rate is.

3 A Recursive Approach to CPO

In this section, we provide the recursive characterisation of the set of CPO allocations and a version

of the Principle of Optimality for economies with heterogeneous beliefs and limited enforceability.

3.1 The Recursive Planner’s Problem

In Appendix A we show that v∗ : S × RI+ × P(Π)→ R solves the functional equation9

v∗(ξ, α, µ) = max
(c,w′(ξ′))

I∑
i=1

αi

ui(ci) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w′i(ξ

′)

 , (6)

subject to

ci ≥ 0,
∑I

i=1
ci = y(ξ), (7)

ui(ci) + β(ξ, µi)
∑

ξ′
πµi(ξ

′ |ξ ) w′i(ξ
′) ≥ Ui(ξ, µi), (8)

w′i(ξ
′) ≥ Ui(ξ′, µ′i(ξ, µ)(ξ′)) for all ξ′, (9)

min
α̃∈RI+

[
v∗(ξ′, α̃, µ′(ξ, µ)(ξ′))−

∑I

i=1
α̃ w′i(ξ

′)

]
≥ 0 for all ξ′, (10)

where

µ′i(ξ, µi)(ξ
′) (D) ≡

∫
D
π(ξ′ |ξ ) µi (dπ)∫
π(ξ′ |ξ ) µi (dπ)

for any D ∈ B(ΠK),

µ′(ξ, µ)(ξ′) ≡ (µ′1(ξ, µ1)(ξ′)...µ′I(ξ, µI)(ξ
′)),

and α′(ξ′) is the solution to problem (10) for state of nature ξ′.
9In section 3.1 we abuse notation and let c to be a non-negative vector and ci its ith component.
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In the recursive dynamic program defined by (6) - (10), the current state of nature, ξ, captures the

impact of changes in aggregate output while (α, µ) summarises and isolates the history dependence

introduced by the B-margin of heterogeneity,
∫
π(ξ′|ξ )µ′i(ξ,µ)(ξ′)(dπ)∫
π(ξ′|ξ )µ′j(ξ,µ)(ξ′)(dπ)

, introduced by Beker and Espino [5]

and limited enforceability.10 The planner takes as given (ξ, α, µ) and allocates current consumption

and continuation utility levels among agents. The optimisation problem defined in condition (10)

characterises the set of continuation utility levels attainable at (ξ′, µ′(ξ, µ) (ξ′)) (see Lemma A.1 in

Appendix A).11 The weights α′(ξ, α, µ)(ξ′) that attain the minimum in (10) are the weights that

support next period allocation.

Any (c, w′, α′) that satisfies (7) - (10) will be referred as a set of policy functions. Given (s0, α0, µ0),

we say the policy functions (c, α′) generate an allocation {ct}∞t=0 ∈ C(s0)I if

ci,t(s) = ci(st, αt(s)),

αt+1(s) = α′(st, αt(s), µst)(st+1),

µi,st+1 = µ′i(st, µi,st)(st+1),

for all i, t ≥ 0 and s ∈ S∞, where α0(s) = α0 and µi,s0 = µi,0.

It follows by standard arguments that the corresponding optimal consumption policy function,

ci(ξ, α), is the unique solution to

ci(ξ, α) +
∑
h6=i

(
∂uh
∂ch

)−1(
αi
αh

∂ui(ci(ξ, α))

∂ci

)
= y(ξ).

where
(
∂uh
∂ch

)−1

denotes the inverse of the function ∂uh
∂ch

.

The following Theorem states our version of the Principle of Optimality. It shows that there is a

one-to-one mapping between the set of CPO allocations and the allocations generated by the optimal

policy functions solving (6) - (10).

Theorem 1. An allocation (c∗i )
I
i=1 is CPO given (ξ, α, µ) if and only if it is generated by the set of

policy functions solving (6) - (10).

Given α−i ∈ RI−1
+ , define

αi(ξ, µ)(α−i) = min
αi

αi ∈ R+ : ui(ci(ξ, (αi, α−i))) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w′i(ξ, (αi, α−i), µ)(ξ′) = Ui(ξ, µ)


where ci(ξ, α) and w′i(ξ, (αi, α−i), µ)(ξ

′
) are the maximisers in problem (6) - (10). For I = 2, we

simply write α1(ξ, µ) and α2(ξ, µ).

10To be more precise, Beker and Espino define the B-margin as the ratio of the priors about the states of nature in

the following t periods while here it is the ratio of the priors about the realisations of next period state of nature.
11To understand condition (10) notice that the utility possibility correspondence is convex, compact and contains its

corresponding frontier. The frontier of a convex set can always be parameterised by supporting hyperplanes. Thus, a

utility level vector w is in the utility possibility correspondence if and only if for every welfare weight α the hyperplane

parameterised by α and passing through w, αw, lies below the hyperplane generated by the utility levels attained by

the CPO allocation corresponding to that welfare weight α, attaining the value v(ξ, α, µ). This is why we must have

αw ≤ v(ξ, α, µ) for all α or, equivalently, minα̃ [v(ξ, α̃, µ)− α̃w] ≥ 0.
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The following Proposition shows that constraint (8) can be ignored by restricting the welfare

weights to lie in ∆(ξ, µ) ≡ {α ∈ ∆I−1 : αi ≥ αi(ξ, µ)(α−i) for all i}.12

Proposition 2. Let (ξ, µ) ∈ S ×P(ΠK). (i) If α ∈ ∆(ξ, µ), then constraint (8) does not bind at any

solution to (6) - (10). (ii) If α /∈ ∆(ξ, µ), then there exists some α̃ ∈ ∆(ξ, µ) such that c(ξ, α) = c(ξ, α̃).

The (normalised optimal) law of motion for the welfare weights, α′i,cpo(ξ, α, µ)(ξ′), follows from

the first order conditions with respect to the continuation utility levels for each individual. In the

two-agent case, the CPO law of motion for agent 1’s welfare weight is

α′1,cpo(ξ, α, µ)(ξ′) =


α1(ξ′, µ) if α′1,po(ξ, α, µ)(ξ′) < α1(ξ′, µ)

1− α2(ξ′, µ) if α′1,po(ξ, α, µ)(ξ′) > 1− α2(ξ′, µ)

α′1,po(ξ, α, µ)(ξ′) otherwise

where

α′1,po(ξ, α, µ)(ξ′) =
α1

∫
π(ξ′ |ξ )µ′1(ξ, µ) (ξ′) (dπ)

α1

∫
π(ξ′ |ξ )µ′1(ξ, µ) (ξ′) (dπ) + α2

∫
π(ξ′ |ξ ) (ξ′)µ′2(ξ, µ) (dπ)

is the PO law of motion for agent 1’s welfare weight that depends only on the extent to which beliefs

are heterogeneous as captured by the B-margin. The CPO law of motion for agent 1’s welfare weight,

instead, combines two effects: belief heterogeneity and limited enforceability. To understand the

impact of each effect we discuss them in isolation. If beliefs are heterogeneous but enforceability is

perfect, the CPO law of motion for agent 1’s welfare weight becomes the PO law of motion. Therefore,

the changes in agent 1’s welfare weight are purely driven by changes in the B-margin. If beliefs are

homogeneous and enforceability is imperfect, the case analysed by Alvarez and Jermann [3], the CPO

law of motion requires the next period welfare weight to be equal to the current one unless that conflicts

with the need to provide incentives to avoid the agent to revert to autarky, i.e. there is some state of

nature for which the current welfare weight does not lie in the interval defined by the corresponding

minimum enforceable weights. Therefore, the changes in agent 1’s welfare weights are purely driven

by the need to satisfy enforceability. If agents have heterogeneous beliefs and enforceability is limited,

both effects might interact. Consequently, changes in agent 1’s welfare weight are driven by the

B-margin unless that conflicts with enforceability.

3.1.1 Discussion

There are at least two alternative approaches to solve recursively the problem defined by (3). To

simplify the exposition we assume there are only two agents. The first alternative was developed by

Thomas and Worral [35] and Kocherlakota [21].13 Instead of using welfare weights to parameterised
12The proof of Proposition 2 is included in the supplementary material.
13Thomas and Worral [35] study the efficient distribution of risk between a risk-neutral firm and a risk-averse worker

in a partial equilibrium setting without commitment. This simplified framework let them describe the Pareto frontier

recursively. Kocherlakota [21] consider a general equilibrium setting and claims that their same technique can be applied

to his problem.
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the allocations, the planner chooses current feasible consumption and continuation utilities for both

agents in order to maximise agent 1’s utility subject to three restrictions: (i) agent 2’s utility is above

some pre-specified level, (ii) feasible allocations are period-by-period enforceable and (iii) continuation

utility levels lie in the next period utility possibility correspondence. Very importantly, these last two

conditions imply that the value function defines the constraint set. The second alternative, developed

in Beker and Espino [5], studies directly the operator defined by (6) - (10).

Since both approaches use the value function to define the constraint set, it is not clear that any

of the associated operators satisfies Blackwell’s discounting (sufficient) condition for a contraction.

When enforceability constraints are ignored, Beker and Espino [5] show that discounting is satisfied

if the operator is properly restricted. With enforceability constraints, however, their approach cannot

be applied. The difficulty can be explained as follows. For any function v that defines the constraint

set, there might be some positive constant, a > 0 such that v+a enlarges the feasible set of choices of

continuation utilities with respect to v. Although v + a is still an affine linear transformation of v, it

gives some room to deal with enforceability and that conflicts with discounting. As a matter of fact,

uniqueness is not satisfied since the function f(ξ, α, µ) =
∑I
i=1 αiUi(ξ, µi) is also a fixed point of the

operator defined by (6) - (10).

Our strategy relates to the seminal idea pioneered by Abreu, Pearce and Stacchetti [2] (discussed

in Alvarez and Jermann [4] in a setting with limited enforceability). They construct an operator

that iterates directly on the utility possibility correspondence and then the value function (and the

corresponding optimal policy functions) are recovered from the frontier of the fixed point of that

operator. Our approach follows their idea but it iterates directly on the utility possibility frontier

parameterised by welfare weights. To implement this strategy, it is key that the utility possibility

correspondence is convex-valued, a property that is not assumed in Abreu, Pearce and Stacchetti [2]

since they are interested in non-convex problems.14

3.2 Computation

For many purposes it is important to have an algorithm capable of finding the value function v∗. Let

ṽ be the value function solving the recursive problem when the enforceability constraints are ignored

(see Beker and Espino [5]). Evidently, v∗(ξ, α, µ) ≤ ṽ(ξ, α, µ) for all (ξ, α, µ).

Proposition 3. Let v0 = ṽ and vn = T (vn−1) for all n ≥ 1. Then, {vn} is a monotone decreasing

sequence and limn→∞ vn = v∗.

3.3 The Welfare Weights Dynamic with Dogmatic Beliefs

In this section we assume there are two agents who have dogmatic beliefs. Ω ≡ {(ξ, α) ∈ S × ∆1 :

α ∈ ∆(ξ, µπ)} is the state space and G its σ−algebra. For t ≥ 0, Ωt is the t−cartesian product of

Ω with typical element ωt = (ξ0, α0, ..., ξt, αt) and Ω∞ = Ω × Ω × ... is the infinite product of the

state space with typical element ω = (ω0, ω1, ...). G−1 ≡ {∅,Ω∞} is the trivial σ−algebra, Gt is the
14They study bang-bang solutions for problems where non-convexities arise due to incentive compatibility constraints.
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σ−algebra that consists of all the cylinder sets of length t. The σ−algebras Gt define a filtration

G−1 ⊂ G0 ⊂ ... ⊂ Gt ⊂ ... ⊂ G∞, where G∞ ≡ G × G×... is the σ−algebra on Ω∞.

The law of motion for the welfare weights, α′cpo, coupled with π∗ define a time-homogeneous

transition function on the states of nature and the welfare weights, Fcpo : Ω× G → [0, 1], given by

Fcpo [(ξ, α) ,S ×A] =
∑

ξ′∈S, α′cpo(ξ,α)(ξ′)∈A

π∗ (ξ′ |ξ ) for all (S ×A) ∈ G

The transition function Fcpo together with a probability measure ψ on (Ω,G) induces a unique prob-

ability measure PFcpo (ψ, ·) on (Ω∞,G∞). We define the operator T ∗ on the space of probability

measures on (Ω,G) as

T ∗ψ (S,A) =

∫
Fcpo ((ξ, α) ,S ×A) dψ for all (S ×A) ∈ G

We use standard arguments to show that T ∗ has a unique invariant measure on (Ω,G) and that the

distribution of states converges weakly to that measure.

Proposition 4. Suppose I = 2 and A.0, A1 and A3 holds for both agents. Then there exists a unique

invariant measure ψcpo : G → [0, 1]. Moreover, ψcpo is globally stable and non-degenerate.

Actually, Beker and Espino [6] show that CPO allocations are never PO for a large class of het-

erogeneous priors in any two-agent economy. Moreover, our numerical simulations led us to conjecture

that, typically, the support of the invariant distribution has a finite number of points.

4 Competitive Equilibrium with Solvency Constraints

In this section we define a competitive equilibrium with solvency constraints (CESC). In Section

4.1 we show that CPO allocations can be decentralised as CESC and study the determinants of the

financial wealth distribution. In section 4.2 we study the limit distribution of wealth and consumption

in a CESC.

Every period t, after observing st, agents trade both the consumption good and a complete set

of Arrow securities in competitive markets. Security ξ′ issued at date t pays one unit of consumption

if next period’s state of nature is ξ′ and 0 otherwise. We denote by qξ
′

t (s) and aξ
′

i,t(s) the price of

Arrow security ξ′ and agent i’s asset holdings, respectively, at date t on path s. Let aξ
′

i,−1 = 0 for all

ξ′, ai,t =
(
a1
i,t, ..., a

K
i,t

)
and ai ≡ {ai,t−1}∞t=0 for all i. Prices are in units of the date–t consumption

good and a price system is given by q ≡
{
q1
t , ..., q

K
t

}∞
t=0

. Agent i faces a state contingent solvency

constraint, Bξ
′

i,t(s), that limits security ξ′ holdings at date t and Bi ≡
{
B1
i,t, ..., B

K
i,t

}∞
t=0

for all i.

Given q and Bi, agent i’s problem is

max
(ci,ai)

EPi

( ∞∑
t=0

ρi,t ui(ci,t)

)

s.t.

 ci,t(s) +
∑
ξ′ q

ξ′

t (s) aξ
′

i,t(s) = yi(st) + asti,t−1(s) for all s and t.

ci,t(s) ≥ 0, ai,−1 = 0, aξ
′

i,t(s) ≥ B
ξ′

i,t(s) for all ξ′, s and t.
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Markets clear if ∑I
i=1 ci,t(s) = y(st) for all s and t.∑I
i=1 a

ξ′

i,t(s) = 0 for all ξ′, s and t.

Definition. A competitive equilibrium with solvency constraints (CESC) is an allocation {ci}i∈I ,
portfolios {ai}i∈I , a price system q and solvency constraints {Bi}i∈I such that:

(CESC 1) Given q and Bi, (ci, ai) solves agent i’s problem for all i.

(CESC 2) Markets clear.

Of course, a CESC need not be CPO (see Bloise et al [9]). In what follows, however, when we

refer to CESC we always mean a CESC that is CPO. A Competitive Equilibrium (CE, hereafter) is

a CESC in which the corresponding allocation is PO.

4.1 Decentralisation

Now we study the determinants of the financial wealth distribution that supports a CESC allocation.

First, we construct recursively the date zero-transfers needed to decentralise a CPO allocation as a

time invariant function of the states (ξ, α, µ). Afterwards, we employ a properly adapted version of

the Negishi’s approach to pin down the CPO allocation that can be decentralised as a CESC with

zero transfers.

We begin defining Ai(ξ, α, µ) as the solution to the functional equation

Ai(ξ, α, µ) = ci(ξ, α)− yi(ξ) +
∑
ξ′

Q(ξ, α, µ)(ξ′) Ai(ξ
′, α′, µ′), (11)

where

Q(ξ, α, µ)(ξ′) = max
h

{
β(ξ, µh) πµh(ξ′ |ξ )

∂uh(ch(ξ′, α′(ξ, α, µ)(ξ′)) /∂ch
∂uh(ch(ξ, α)) /∂ch

}
,

Expression (11) computes recursively the present discounted value of agent i’s excess demand at the

CPO allocation priced by the implicit state priceQ(ξ, α, µ)(ξ′). LetRF (ξ, α, µ) =
(∑

ξ′ Q(ξ, α, µ)(ξ′)
)−1

be the (implicit) risk-free interest rate

Definition. We say that a CPO allocation generates positive risk-free interest rates if RF (ξ, α, µ) > 1

for all (ξ, α, µ).

Proposition 5 shows that positive risk-free interest rates guarantees that Ai is well-defined and

there exist a welfare weight α0 such that Ai is zero for every i. The allocation parameterised by α0 is

the natural candidate to be decentralised as a CESC.15

15In the literature studying competitive decentralisation of PO allocations in growth economies with homogeneous

beliefs, the positive risk-free interest rate condition is ubiquitous to make utility levels bounded and, thus, to establish

the existence of a competitive equilibrium. Since Q̂(ξ, µ, α)(ξ′) = β(ξ) π̂(ξ′ |ξ ) = β π(ξ′ |ξ ) g(ξ′)1−σ is the state price

of the normalised stationary economy, the positive risk-free interest rate condition is equivalent to condition (5).
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Proposition 5. Suppose A1 holds for all agents. If the CPO allocation generates positive risk-free

interest rates, there is a unique continuous function Ai solving (11). Moreover, for each (s0, µ0) there

exists α0 = α(s0, µ0) ∈ RI+ such that Ai(s0, α0, µ0) = 0 for all i.

We follow the Negishi’s approach to decentralise the CPO allocation parameterised by α0 as a

CESC. For each s, t and ξ′, we define recursively

aξ
′

i,t(s) = Ai
(
ξ′, α′cpo(st, αt(s), µst) (ξ′) , µ(st,ξ′)

)
(12)

qξ
′

t (s) = Q(st, αt(s), µst)(ξ
′) (13)

Bξ
′

i,t(s) = Ai
(
ξ′, α′cpo(st, αt(s), µst) (ξ′) , µ(st,ξ′)

)
, (14)

with µs−1 = µ0 and αt for t ≥ 1 is generated by α′cpo and α0 = α(s0, µ0).

In a decentralised competitive setting with sequential trading, Ai(st, αt(s), µst) can be interpreted

as the financial wealth that agent i needs at date t on path s to afford the consumption bundle cor-

responding to the CPO allocation parameterised by αt(s) given (st, µst) (see Espino and Hintermaier

[17] for further discussion).16

Theorem 6. Suppose that A1 holds for all agents. If the CPO allocation parameterised by α0 =

α(s0, µ0) generates positive risk-free interest rates, then it can be decentralised as a CESC with port-

folios {ai}i∈I , price system q and solvency constraints {Bi}i∈I defined by (12)-(14).

4.2 The Limiting Distribution of Wealth and Consumption

Theorem 6 shows that the dynamics of the individuals’ wealth and consumption in a CESC allocation

is driven by the dynamic of the welfare weights. Proposition 4 shows that welfare weights have a

non-degenerate limiting distribution. The following Proposition couples these two results.

Proposition 7. Suppose I = 2 and A.0, A1 and A3 holds for both agents. The limiting distribution

of wealth and consumption in a CESC is non-degenerate.

An important implication of this result is that every agents’ consumption is bounded away from

zero regardless of whether her beliefs are correct or not (see Cao [11] for an alternative discussion).

Therefore, the so-called Market Selection Hypothesis does not hold in this setting.

5 Short-Term Momentum and Long-Term Reversal

In Section 5.1 we introduce a formal definition of short-term momentum and long-term reversal in

terms of the empirical autocorrelations of the equity excess returns. In Section 5.2, we argue that in

any CE or CESC, the empirical autocorrelations can be approximated using the population autocor-

relations. In Section 5.3 we provide a statistical characterisation of the population autocorrelations
16Our equilibrium concept does not rely on solvency constraints that are not too tight, see Alvarez and Jermann

[3] and [4]. In our decentralisation, individual asset holdings are always at the solvency constraints by construction.

However, as discussed in Alvarez and Jermann [4, pp 1131], some of these are "false corners", i.e., if the solvency

constraints were marginally relaxed, the agent would not change the optimal choice of consumption and asset holdings.
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in terms of the reaction of the conditional equity-premium to the realisation of the excess returns.

Finally, in Section 5.4 we reinterpret the equivalent martingale measure as a market belief. We char-

acterise the changes of the conditional equity premium to the realisation of the excess return in terms

of how market pessimism changes as the market updates its belief.

5.1 Definitions

We are interested in the asset that Mehra and Prescott [27] study. Let dt (s), pt (s) and rft (s) be the

dividend of the asset, its ex-dividend price and the (gross) risk-free interest rate, respectively, at date

t on path s. For t ≥ 1, let the one-period excess rate of return (the return hereafter) be defined as

rt (s) =
pt (s) + dt (s)

pt−1 (s)
− rft−1 (s)

where dt (s) = yt (s) for all t and s.

We imagine an econometrician who observes data on returns for T consecutive periods. Let

rT (s) ≡ 1

T

T∑
t=1

rt (s) and σ2
T ≡

1

T

T∑
t=1

(rt (s)− rT (s))
2

be the empirical average and variance of the returns. Let

covk,T (s) ≡ 1

T

T∑
t=1

(rt (s)− rT (s)) (rt+k (s)− rT (s)) and ρk,T (s) ≡ covk,T (s)

σT (s) σT (s)

be the empirical autocovariance and autocorrelation coefficient of order k ≥ 1.

Now we give a formal definition of the so-called financial markets anomalies that we explain.

Definition. The asset displays short-term momentum on a path s if lim
T→∞

ρ1,T (s) > 0. The asset

displays long-term reversal on a path s if lim
T→∞

ρ2,T (s) < 0.

5.2 Asymptotic Approximation

The empirical autocorrelations are continuous functions of the return and (CE or CESC) equilibrium

returns are continuous functions of a Markov process with transition function Fe on (Ω,G), where

e ∈ {po, cpo}.17 If one argues that the Markov process is ergodic with invariant distribution ψe, then

standard arguments show that the following asymptotic approximation holds for τ ∈ {1, 2}

lim
T→∞

covτ,T (s) = covPe (R1,e, Rτ+1,e) and lim
T→∞

σT (s) = σPe (R1,e) , Pπ
∗
− a.s., (15)

where Pe ≡ PFe (ψe, ·) and Rτ,e : Ω∞ → < is a Gτ−measurable function defined by Rτ,e (ω) ≡
Re
(
ξτ (ω) , ατ (ω) , µξτ (ω)

)
(ξτ+1 (ω)).

Theorem 8. Assume A.0 holds, A.1 holds for every agent and A.2 holds for some agent. Then the

asymptotic approximation (15) holds if

(a) Allocations are PO or

(b) Allocations are CPO, I = 2 and both agents have dogmatic beliefs satisfying A3.
17When allocations are PO, with some abuse of notation, we define Ω ≡ S ×∆1 and G its σ−algebra.
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Theorem 8 can be intuitively explained as follows. For the case in which allocations are PO and

the dgp is iid, Beker and Espino [5] show that if A1 holds for every agent and A2 holds for some

agent, then the vector of welfare weights associated with a PO allocation converges to a fixed vector

almost surely. An analogous result can be proved in the case that the dgp is generated by draws

from a time-homogeneous transition matrix as in this paper. This result coupled with the well-known

consistency property of Bayesian learning implies the ergodicity of the Markov process with transition

Fpo. For the case in which allocations are CPO and agents have dogmatic priors satisfying A3, the

result follows directly from Proposition 4.

Remark: The well-known result on convergence of posteriors implies that if every agent satisfies

A1, there exists π = (π1, ..., πI) such that µi,st converges weakly to µπi for Pπ
∗−almost all s ∈ S∞.18

That is, posterior beliefs converge to some dogmatic belief µπi . Since the rest of the paper is devoted

to asymptotic results, in what follows we restrict attention to the case where every agent i has a

dogmatic prior µπi . Accordingly, we omit the state variable µπi .

5.3 Statistical Characterisation

For τ ≥ 2, the law of iterated expectations implies that

covPe (R1,e, Rτ,e) = EPe
[
R1,e E

Pe
(
Rτ,e|R1,e

)]
, (16)

where R1,e (ω) ≡ R1,e (ω) − EPe (R1,e) is the abnormal return and EPe
(
Rτ,e|R1,e

)
(ω) denotes

the τ−period ahead conditional (to the σ−algebra generated by the abnormal return) equity pre-

mium. We refer to R2,e and R3,e as the short-run and long-run returns, respectively. Likewise,

EPe
(
R2,e|R1,e

)
(ω) and EPe

(
R3,e|R1,e

)
(ω) are the conditional short-run equity premium and the

conditional long-run equity premium, respectively.

Condition (16) makes clear that the sign of the autocovariance of order τ depends on how the

conditional equity premium reacts to abnormal returns. The important question is what kind of

reaction of the conditional equity premium leads to short-term momentum and long-term reversal.

The following definitions will be used in Proposition 9 to provide an answer to that question.

Definition. Let R+ > 0 and R− < 0. For any τ ≥ 2,

• EPe
(
Rτ,e|R1,e

)
trends at (R+, R−) if R1,e (ω+) = R+ and R1,e (ω−) = R− implies

EPe
(
Rτ,e|R1,e

) (
ω+
)
> EPe

(
Rτ,e|R1,e

) (
ω−
)

• EPe
(
Rτ,e|R1,e

)
reverts to the mean at (R+, R−) if the reverse inequality holds.

• EPe
(
Rτ,e|R1,e

)
trends (reverts to the mean) if, Pe−a.s, EPe

(
Rτ,e|R1,e

)
trends (reverts to the

mean) at (R+, R−).
18Where πi ∈ ΠK is the point in the support of agent i’s prior which minimises the Kullback-Leibler divergence with

respect to π∗. See the seminal work of Berk [8] for the i.i.d. case and Yamada [37] for the Markov extension.
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This Proposition provides a sufficient condition for both short-term momentum and long-term

reversal that follows immediately from (16) and the definition above.

Proposition 9. If the τ -period ahead conditional equity premium trends, then the τ−order autocor-

relation is positive. If the τ -period ahead conditional equity premium reverts to the mean, then the

τ−order autocorrelation is negative. That is, (i) if the conditional short-run equity premium trends,

then the asset displays short-term momentum and (ii) if the conditional long-run equity premium

reverts to the mean, then the asset displays long-term reversal.

5.4 The Economics of Predictable Returns

Note that the law of iterated expectations implies that

EPe
(
Rτ,e|R1,e

)
(ω) = EPe

[
EPe (Rτ,e| G1)

∣∣R1,e

]
(ω) , for all τ ∈ {2, 3} .

Thus, to explain when the hypothesis of Proposition 9 are met we have to understand the behaviour

of EPe (Rτ,e| G1) (ω).

Definition. Returns are unpredictable if EPe (Rτ,e| G1) (ω) is G0−measurable for all τ ∈ {2, 3} .

Returns are unpredictable if EPe (Rτ,e| G1) (ω) does not change with the information released at

date 1, i.e. the conditional equity premium coincides with the (unconditional) equity premium. Our

next result follows immediately from (16), the definition of unpredictable return and the fact that the

σ−algebra generated by the abnormal return in period 1 is contained in G1.

Proposition 10. If returns are unpredictable, the asset does not display financial markets anomalies.

The case we are interested is when returns are predictable, that is EPe (Rτ,e| G1) (ω) varies with

the information released at date 1. Unfortunately, this case is more complex because returns can be

predictable in many different ways.

For e ∈ {po, cpo}, let Me : G∞ → [0, 1], be the equivalent martingale measure on (Ω∞,G∞) and

let me : G → [0, 1] be given by

me (ξ′ |ξ, α ) ≡ Qe(ξ, α)(ξ′)∑
ξ̃∈S Qe(ξ, α)(ξ̃)

= RFe (ξ, α)Qe(ξ, α)(ξ′) > 0.

Then Me(C (ωτ , ξ′)| Gτ ) (ω) = me (ξ′ |ξτ (ω) , ατ (ω) ) and so me can be reinterpreted as the market

belief about the states of nature next period.

The rest of this section is devoted to provide conditions on the market belief so that the conditional

equity premium either trends or reverts to the mean. Note that

EPe (Rτ,e| G1) = EMe

(
π∗τ
mτ,e

Rτ,e

∣∣∣∣G1

)
(17)

where mτ,e (ω) ≡ me (ξτ (ω) |ξ1 (ω) , α1 (ω) ) and π∗τ (ω) ≡ π∗ (ξτ (ω) |ξ1 (ω) ). When the ratio π∗τ
mτ,e

is identically equal to one, then the τ−period ahead conditional equity premium is equal to zero.

When the ratio π∗τ
mτ,e

is different from one with positive probability, typically, the τ−period ahead
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conditional equity premium is different from zero. For example, if the ratio π∗τ
mτ,e

is greater than one

when the return is positive and smaller than one otherwise, a situation where we say the market belief

is pessimistic about the return, then the τ−period ahead conditional equity premium is positive.

In the PO and CPO allocations we consider later, the sign of the return at any given period

depends only on the state of nature that period. The following definition gives a useful taxonomy of

states when that property holds.

Definition. A state of nature ξ′ is good news if, ψe − a.s , Re (ξ, α) (ξ′) > 0. A state of nature ξ′ is

bad news if, ψe − a.s, Re (ξ, α) (ξ′) < 0.

Condition (17) makes clear that the sign of EPe (Rτ,e| G1) depends on how π∗τ
mτ,e

depends on the

state of nature at τ . However, to understand trending and mean reversion what we actually need to

understand is how EPe (Rτ,e| G1) changes as the conditioning information changes. With that purpose

in mind, we introduce the following definition.

Definition. The market is more pessimistic at state (ξ+, α+) than at state (ξ−, α−) if for every bad

news ξ′,
π∗ (ξ′| ξ+)

me (ξ′ |ξ+, α+ )
<

π∗ (ξ′| ξ−)

me (ξ′ |ξ−, α− )

where the ratio
π∗( ξ′|ξ)
me(ξ′|ξ,α ) denotes the market pessimism at (ξ, α) .

In the i.i.d. case, i.e. π∗ (ξ′| ξ) is independent of ξ, the condition for the market belief to be more

pessimistic at (ξ+, α+) than at (ξ−, α−) reduces to me (ξ′ |ξ+, α+ ) > me (ξ′ |ξ−, α− ).

The following definition let us move from the returns space to the state space. This is necessary

because Proposition 9 applies to random variables defined on the former while EPe (Rτ,e| G1) (ω) and

the market belief are defined on the latter.

Definition. State (ξ̃, α̃) is consistent with realisation R of R1,e if there exists a state (ξ, α) such that

Re (ξ, α) (ξ̃) = R and α′e(ξ, α)(ξ̃) = α̃.

To grasp the difficulty in finding a sufficient condition for trending, consider the case in which,

given (ξ, α), the range of Re (ξ, α) (·) has only two elements, say Re (ξ, α) (L) and Re (ξ, α) (H) and

H is good news. EPe
(
R2,e|R1,e

)
(ω) trends at (R+, R−) if

π∗ (L|H)Re (H,α+) (L) + π∗ (H|H)Re (H,α+) (H)

π∗ (L|L)Re (L,α−) (L) + π∗ (H|L)Re (L,α−) (H)
> 1

for states (H,α+) and (L,α−) consistent with realisations R+ and R−, respectively, of R1,e. Note that

even if Re (H,α+) (ξ′) > Re (L,α−) (ξ′) for all ξ′ ∈ {L,H}, mean reversion might arise if π∗ (L|H)

is sufficiently larger than π∗ (L|L). So, we need to find an expression that relates trending with the

changes in π∗ (L| ξ) and Re (ξ, α) (L) induced by changes in the state (ξ, α).

Since EMe (Rτ+1,e| Gτ ) (ω) = 0, then we can write

Re (ξτ , ατ ) (L) = −1−me (L |ξτ , ατ )

me (L |ξτ , ατ )
Re (ξτ , ατ ) (H) (18)
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Therefore, using (18)
EPe (Rτ+1,e| Gτ ) =

(
1− π∗ (L| ξτ )

me (L |ξτ , ατ )

)
Re (ξτ , ατ ) (H)

Thus, EPe
(
R2,e|R1,e

)
trends at (R+, R−) if and only if(

1− π∗(L|H)
me(L|H,α+ )

)
Re
(
H,α+

)
(H) >

(
1− π∗(L|L)

me(L|L,α− )

)
Re
(
L,α−

)
(H) (19)

for all states (H,α+) and (L,α−) consistent with R+ and R−, respectively.

Definition. The recession bias effect at (α+, α−) is

Υe

(
α+, α−

)
≡ π∗ (L|L)

me (L |L,α− )
− π∗ (L|H)

me (L |H,α+ )
.

The recession bias effect will be useful to characterise the reaction of the conditional equity-

premium in allocations where the market belief overestimates the likelihood of a recession at every

state (ξ, α). In those allocations, the recession bias effect is positive if and only if the market is more

pessimistic at the expansion state than at the recession state and it is negative otherwise.

Definition. The return inertia effect at (α+, α−) is

Ie
(
α+, α−

)
≡ Re

(
H,α+

)
(H)−Re

(
L,α−

)
(H) .

The return inertia effect is positive if and only if the highest return in the following period is larger

after expansions than after recessions. It follows from (19) that the conditions below are sufficient for

EPe
(
R2,e|R1,e

)
to trend at (R+, R−):

(i) Υe

(
α+, α−

)
> 0 (ii) Ie

(
α+, α−

)
> 0, (20)

where (H,α+) and (L,α−) are consistent with realisations R+ and R−, respectively, of R1,e. We refer

to conditions (i) and (ii) as positive recession bias and positive return inertia effects, respectively.

6 Financial Market Anomalies?

In this section we evaluate qualitatively and quantitatively the ability of CE and CESC allocations to

generate short-term momentum and long-term reversal.

Property A captures and intuitive relationship between short-term momentum, long-term reversal

and the persistency of expansions.

Property A: If the asset displays short- term momentum, then it also displays long-term reversal

if and only if expansions are not strongly persistent.

The following Theorem, see Beker and Espino [7], gives conditions for Property A to hold.19

Theorem 11. Suppose A0 holds and either A1.a or A1.b holds for every agent. Property A holds in

(a) Any CE of a baseline growth economy where A2.a or A2.b holds for some agent.

(b) Any CESC of a baseline growth economy where every agent has homogeneous dogmatic beliefs

satisfying A2 and α1(1) = α1(2).

19For the sake of completeness we provide a proof in the supplementary material.
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6.1 Asset returns with Aggregate Growth

To facilitate quantitative analysis, in this section we define asset returns for a growth economy with

dogmatic beliefs. The particular form of the growth process we assume in (4) makes the state prices

in the growth economy, Qe, independent of current output. Indeed,20

Qe(ξ, α)(ξ′) = β max
h

{
πh(ξ′ |ξ )

(ĉh(ξ′,α′e(ξ,α)(ξ′))−σ

(ĉh(ξ,α))−σ

}
g(ξ′)−1 = Q̂e(ξ, α)(ξ′) g(ξ′)−1

The price-dividend ratio in the growth economy, PDe , is the solution to

PDe (ξ, α) =
∑
ξ′

Qe(ξ, α)(ξ′)g(ξ′)
(
1 + PDe (ξ′, α′e(ξ, α)(ξ′))

)
=

∑
ξ′

Q̂e(ξ, α)(ξ′)
(
1 + PDe (ξ′, α′e(ξ, α)(ξ′))

)
for all (ξ, α). Therefore, the asset return can be written as

REe (ξ, α)(ξ′) =
1 + PDe (ξ′, α′e(ξ, α)(ξ′))

PDe (ξ, α)
g(ξ′).

6.2 Calibration

We set S = 4 to allow for both aggregate and idiosyncratic risk while respecting symmetry across

agents. We specify the endowment process with four values for the income of each agent and two

values for the growth rate. Even and odd states correspond to high and low, respectively, growth

rates. Agent 1’s income share is high in state 1 and 2 and low otherwise. Because of symmetry, there

are 10 parameters to be selected: six for π∗, two for y1 (·) and two for g (·). We calibrate these 10 free

parameters using the same 10 moments describing the US aggregate and household income data that

Alvarez and Jermann use (see Appendix C for the calibrated parameters.)

In Table 1 we report our computations of the annual averages of the risk-free interest rate and

equity-premium and also the 1st and 2nd order empirical annual autocorrelations for the US stock

market using Mehra and Prescott [27] dataset .

Table 1

Period Risk-Free Rate Equity-Premium
1st − order

autocorrelation

2nd − order

autocorrelation

1900-2000 0.8% 6.18% 13.94% -15.28%

If a model generates a time series of returns that displays both short-term momentum and long-

term reversal for some values of β and σ, we say that it’s predictions are qualitatively accurate.

Afterwards, we set β and σ to match the average annual risk-free rate of 0.8% and equity premium of

6.18%. If for those parameters the model can generate autocorrelations that are both of the same sign

and order of magnitude as those in Table 1, we say that it’s predictions are quantitatively accurate.

20Note that (5) reduces to maxξ′
{
β
∑
ξ′ πi(ξ

′ |ξ )g(ξ′)1−σ
}
< 1.

19



6.3 Standard Model I: CE Allocations

In this section we present our numerical solutions for CE. Figure 1 plots the 1st and 2nd-order auto-

correlations of returns for σ ∈ [0, 18].

Figure 1: Autocorrelation coefficients in CE

The salient feature of Figure 1 is that, contrary to the conventional wisdom, the asset can actually

display short-term momentum and long-term reversal in CE. Indeed, the signs of the autocorrelations

are as in Table 1 if σ is below a threshold, which is close to 16 in our example.

To explain the sign of these correlations, we first recall that Theorem 11(a) shows that short-

term momentum implies long-term reversal. Thus, we need to explain the sign of the 1st order

autocorrelations, i.e. why short-term momentum occurs, and, by Proposition 9, it suffices to argue

that trending and mean reversion occurs for low and high values, respectively, of σ. Since returns in

CE depend only on the current state of nature and the growth rate, its range takes only two values

given the current state of nature. Therefore, we can use the decomposition we introduce in (20) to

explain why the conditional short-run equity premium trends.

We refer to events {1, 3} or {2, 4} as a recession (L) or an expansion (H), respectively. Note that,

under our assumptions, any expansion state is good news while any recession one is bad news.

We abuse notation and denote the risk-free rate by RFpo(ξ̃, α∞) for ξ̃ ∈ {L,H}. Then,

RFpo(ξ̃, α∞) =
[
β
(
π∗(L| ξ̃)g (L)

−σ
+ π∗(H| ξ̃)g (H)

−σ
)]−1

where π∗ (L|L) ≡ π∗ (1| 1) + π∗ (3| 1) and π∗ (L|H) ≡ π∗ (1| 2) + π∗ (3| 2). Since π∗ (L|H) >

π∗ (L|L), then the risk free rate is larger in recessions than in expansions for all σ > 0. That is

RFpo(L,α∞) = RFpo(H,α∞) if σ = 0 and RFpo(L,α∞) > RFpo(H,α∞) if σ > 0

The market belief about a recession at (ξ̃, α∞) is

mpo(L|ξ̃, α∞) = RFpo(ξ̃, α∞) β π∗(L|ξ̃) g (L)
−σ

and, therefore, market pessimism is inversely proportional to the risk-free rate.
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In Figure 2 we plot the recession bias (on the left-hand side) and the return inertia effects (on the

right-hand side) for different levels of risk aversion.

Figure 2: Recession Bias and Return Inertia Effects in CE

Figure 2 shows the recession bias effect is negative and the return inertia effect is positive for all σ.

For low levels of σ, there is trending because the recession bias effect vanishes and the return inertia

effect is small but positive. For high levels of σ, there is mean reversion because the recession bias

effect becomes strongly negative and outweighs the positive return inertia effect.

First, we explain the recession bias effect. For σ = 0, the recession bias effect is zero because

interest rates are state independent and so is the market pessimism. For σ > 0, the recession bias

effect becomes negative because market pessimism is a decreasing function of the risk-free rate which

implies that
π∗ (L |L )

mpo (L |L,α∞ )
<

π∗(L|H)

mpo (L |H,α∞ )
for any σ > 0.

To explain the return inertia effect, we plot it together with the equity return and the risk-free

rate in Figure 3.

Figure 3: Determinants of the Return Inertia Effect in CE

Note that when σ = 0, REpo (·, α∞) (H) is larger after an expansion than after a recession while the

risk free rate is state independent. Therefore, REpo (·, α∞) (H) is larger after an expansion than after a

recession for σ = 0 and, by continuity, for low levels of σ as well. As σ increases, the situation does not

change in spite ofREpo (H,α∞) (H)−REpo (L,α∞) (H) being negative becauseRFpo (L,α∞)−RFpo (H,α∞)

is positive and larger in absolute value.
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The left and right hand sides of Figure 4 illustrates the equity premium and the values of β

required to fit the risk-free rate of 0.8%, respectively, as a function of σ (see Appendix C.1).

Figure 4: Equity Premium and Calibrated β in CE

The left-hand side of Figure 4 shows that a high σ, close to 14.5 in our calibration, is necessary

to obtain an equity-premium of 6.18% as Mehra and Prescott [27] pointed out. The right-hand side

of Figure 4 makes it clear that β has to be larger than 1, as put forward by Weil [36].

Figure 1 forcefully show that in spite of the conventional wisdom, CE allocations are able to

generate qualitatively accurate predictions. In particular, short-term momentum is due to positive

return inertia effect. However, for the values of β and σ for which the model matches the historical

averages of the risk free rate and equity premium, the autocorrelations have the same sign as in Table

1 but they are negligible. Indeed, in Figure 1 we can see that for σ close to 14.5 both magnitudes are

lower than 1% in absolute value. We conclude that the failure of CE to explain short-term momentum

and long-term reversal is only of a quantitative nature.

6.4 Standard Model II: CESC Allocations-Homogeneous Beliefs

In this section we report the results of our numerical simulations of CESC when both agents have

correct beliefs. Figure 5 shows the autocorrelations of asset returns in CESC for values of σ ∈ [2, 5]

when β is chosen to fit the average risk-free rate of 0.8%. In addition, it compares them with the

corresponding autocorrelations in the CE of the same economy.

Figure 5: Autocorrelation Coefficients in CESC with correct beliefs.
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There are two important lessons to draw from Figure 5. First, the asset displays short-term momentum

(and long-term reversal) only for moderate levels of σ. Indeed, the 1st-order autocorrelation is positive

only for σ < 4.3. Second, CESC allocations generate larger (in absolute value) autocorrelations, both

in the short-run as well as in the long-run, than CE allocations for moderate levels of σ while the

opposite occurs for large levels of σ. Indeed, the absolute value of the autocorrelations are larger in a

CESC than in a CE only for σ < 3.4.

To explain the sign of these autocorrelations, we consider the CESC of a proxy economy that

differs from the original economy in that its minimum enforceable weights in states 2 and 4 are set

equal to those of the original economy in states 1 and 3. We use the symbol ˜ above a variable when

the latter belongs to the proxy economy. That is,

α̃i,cpo (ξ) = αi,cpo (ξ) if ξ ∈ {1, 3} ,

α̃1,cpo (2) = α1,cpo (1) ,

α̃2,cpo (4) = α2,cpo (3) .

The numerical solutions for both economies are similar because the invariant distribution (see

Appendix C.2) places very little mass on
[
α1,cpo (2) , α1,cpo (1)

)
and

(
α2,cpo (4) , α2,cpo (3)

]
. Since the

minimum enforceable weights of the proxy economy are measurable with respect to the growth rate,

both the market belief as well as the returns inherit that property. Furthermore, any expansion state

is good news and any recession state is bad news. Since the growth rate takes only two values, so does

the return given the current state, and so we are able to use the decomposition introduced in (20).

Note that the support of the invariant distribution of the (proxy economy) welfare weights consists

of (α̃1,cpo (1) , 1−α̃1,cpo (1)) and (1−α̃2,cpo (2) , α̃2,cpo (2)). Therefore, without loss in generality, returns

can be written as a function only of the state of nature. With some abuse of notation we denote the

the risk-free rate of the proxy economy in state of nature ξ̃ ∈ {L,H} as

R̃Fcpo(ξ̃) ≡ β−1
(
π̃(L|ξ̃)g (L)

−σ
+ π̃(H|ξ̃)g (H)

−σ
)−1

where π̃ (L|L) ≡ π∗ (1| 1) + π∗ (3| 1) θAJ , π̃ (L|H) ≡ π∗ (1| 2) + π∗ (3| 2) θAJ and the term θAJ > 1,

defined in Appendix C.2, reflects the increase in the marginal valuation of consumption when, as

in Alvarez and Jermann [3], the enforceability constraint binds. Since the marginal valuation of

consumption is highest in a recession and the latter is more likely after an expansion has occurred,

i.e. π̃ (L|H) > π̃ (L|L) , then the risk-free rate of the proxy economy satisfies:

R̃Fcpo (L) > R̃Fcpo (H)

The market belief of the proxy economy adjusts upwards the probability of those states where the

enforceability constraint binds and it is always the agent who is rich in that state who is constrained.

Since the enforceability constraints that bind are those that correspond to states next period where

the income shares change with respect to the current one, the market belief of the proxy economy is

m̃cpo (ξ′ |ξ ) =


β R̃Fcpo (ξ) π∗ (ξ′ |ξ ) g (ξ′)

−σ if ε1 (ξ′) = ε1 (ξ′)

β R̃Fcpo (ξ) π∗ (ξ′ |ξ ) g (ξ′)
−σ

θAJ if ε1 (ξ′) 6= ε1 (ξ′)
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Theorem 11(b) implies that it suffices to explain when short-term momentum occurs in the proxy

economy. By Proposition 9, it suffices to argue that trending and mean reversion occurs for low and

high values, respectively, of σ.

Note that market pessimism in state of nature ξ̃ ∈ {L,H} is

π∗(L|ξ̃)
m̃cpo(L|ξ̃)

=
1

β(σ)R̃Fcpo(ξ̃)

π∗(L|ξ̃)
π̃(L|ξ̃)

g (L)
σ

where m̃cpo (L |L ) ≡ m̃cpo (1 |1) + m̃cpo (3 |1) and m̃cpo (L |L ) ≡ m̃cpo (2 |2) + m̃cpo (4 |2).

Figure 6 shows that the recession bias effect is negative and decreasing in σ but the return inertia

effect is always positive.

Figure 6: Recession Bias and Return Inertia Effects in CESC with correct beliefs

Consequently, for low σ there is trending because the return inertia effect dominates. For high σ,

there is mean reversion because the return inertia effect vanishes.

To understand why the recession bias effect is negative, note that since π∗ (3 |1) and π∗ (4 |2) are

small, then
π∗(L|ξ̃ )
π̃(L|ξ̃ )

is close to one and so market pessimism is driven by the risk-free rate, that is

π∗ (L |L )

m̃cpo (L |L )
<

π∗ (L |H )

m̃cpo (L |H )

To understand why the return inertia effect is positive, we plot the return inertia effect together

with the equity return and the risk free rate in Figure 7.

Figure 7: Return Inertia Effect in CESC with correct beliefs.
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Note that even though REcpo (·, ·) (H) is larger after a recession than after an expansion, the differential

of the risk-free rate between a recession and an expansion is much larger and dominates.

The right-hand side of Figure 8 shows the values of β required to fit the risk-free rate of 0.8% for

different values of σ. The left-hand side of Figure 8 shows how the equity premium changes with σ.

Figure 8: Equity Premium and Calibrated β in CESC with correct beliefs

The right-hand size of Figure 8 shows that β < 1. The left-hand side of Figure 8 shows that only

values of σ close to 4.5 generate an equity-premium close to 6.18%.

Figure 5 makes clear that CESC allocations are able to generate predictions that are qualitatively

accurate. For those parameterizations, short-term momentum is due to a positive return inertia effect.

Figure 5 also shows that for the values of β and σ for which the model matches the historical averages

of the risk free rate and equity premium, the model fails to generate short-term momentum and

long-term several. Consequently, the failure of CESC allocations is only of a quantitative nature.

6.5 CESC Allocations: Heterogeneous Beliefs

In this section we report the results of our numerical simulations for CESC when agents have hetero-

geneous beliefs. We first report the autocorrelations of returns for the calibrated economy and then

we explain the role played by belief heterogeneity.

We assume agent 1 has correct beliefs and agent 2 believes the transition function belongs to the

following family of transition matrices parameterised by ε ∈ (−π∗ (1| 2) , π∗ (2| 2)):

π∗ +


0 0 0 0

ε −ε 0 0

0 0 0 0

0 0 ε −ε


In this parameterization, agent 2 has (possibly) incorrect beliefs regarding the persistency of an

expansion, i.e. π2 (2| 2) = π2 (4| 4) = π∗ (2| 2) − ε = 0.682 − ε, and correct beliefs otherwise. In

particular, he has correct beliefs regarding the idiosyncratic state. Clearly, this parameterization

satisfies assumption A3 for every ε > 0.
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Figure 9 plots the 1st and 2nd-order autocorrelations as a function of agent 2’s beliefs. For each

value of π2 (2| 2), β and σ are calibrated to match both the risk-free rate of 0.8% and the equity

premia of 6.18%. Pessimism generates autocorrelations of the same order of magnitude than those

in Table 1. For example, 1st and 2nd-order autocorrelations are 0.14 and −0.083, respectively, when

π2 (2| 2) = 0.222, σ = 2 and β = 0.767.

Figure 9: Autocorrelation Coefficients in the fully calibrated CESC - Heterogeneous beliefs.

One of the difficulties to explain the effect of belief heterogeneity on the autocorrelations of the

calibrated economy in Figure 9 is that as agent 2’s beliefs change, both σ and β change. In order to

isolate the effect of belief heterogeneity from that induced by the changes in σ and β, Figure 10 plots

the autocorrelations for fixed values of σ and β. In particular, we consider the high-β parameterization

of Alvarez and Jermann [4], i.e., σ = 3.5 and β = 0.7794. In that setting, Figure 10 underscores that

as agent 2 becomes more pessimistic, the asset displays autocorrelations of an order of magnitude

larger than those predicted by the previous models.

Figure 10: Autocorrelations - AJ High-β parameterization
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To understand the effect of belief heterogeneity on the market belief, we first consider the role it plays

on the law of motion of the welfare weights. Figure 11 compares the law of motion of the welfare

weights of the heterogeneous beliefs economy (on the left, where π2(2| 2) = 0.382) to that of the

homogeneous beliefs economy (on the right, where π2(2| 2) = π∗2(2| 2) = 0.682).

Figure 11: Welfare Weights Law of Motion

For simplicity, we only consider the law of motion evaluated on welfare weights of states 3 and 4.

There are two similarities with the case of homogeneous beliefs. First, if one transits from an state

where agent i has low income share to an state where agent i’s has high income share, i’s enforceability

constraints bind at those states and so it is always agent −i who is unconstrained.21 Second, if one

transits from an state where agents have homogeneous beliefs (states 1 or 3) to an state with the same

income share as today’s, then the welfare weight does not change and no enforceability constraint

binds.22 The difference with the case of homogeneous beliefs arises when one transits from an state

where there is belief heterogeneity (states 2 or 4) to a state with the same income shares (states 1 or 3,

respectively).23 This is because belief heterogeneity makes the welfare weights of the agent who puts

lower probability on tomorrow’s state to decrease and so it might make his enforceability constraint

to bind. Most importantly, it is always the agent who puts higher probability on tomorrow’s state

who is unconstrained. In particular, when the transition is from an expansion to a recession (with no

reversal of income shares) and ε > 0, it is always agent 2 who is unconstrained.

Figure 12 plots the conditional invariant distribution of the welfare weights for different values of
21That is, the enforceability constraints of states 3 and 4 bind if the current state is 1 or 2 and that of states 1 and 2

bind if the current state is 3 or 4.
22For our parameterization of agent 2’s pessimism, the support of the invariant distribution does not include the

intervals (α1 (4) , α1 (3)) and (α1 (2) , α1 (1)) since they are not contained in the range of the law of motion. Therefore,

our discussion of the law of motion refers always to welfare weights outside those sets.
23That is, from states 2 or 4 to states in {1, 2} or in {3, 4}, respectively.
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agent 2’s pessimism. The existence of an invariant distribution follows by Proposition 4.

Figure 12: Invariant Distribution of CPO Welfare Weights

As agent 2 becomes more pessimistic, the conditional invariant distribution not only becomes non-

degenerate but it also places more mass on larger values of agent 1’s welfare weights.

Figure 13 plots the distribution of the conditional equity premium.

Figure 13: Distribution of the Conditional Equity Premium in CESC.

A direct implication of the fact that the conditional invariant distribution of the welfare weights is

non-degenerate is that the distribution of the conditional equity premium is non-degenerate as well.

Figure 13 underscores that belief heterogeneity increases not only the support but also the volatility
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of the conditional equity premium. Most importantly, EPe
(
R2,cpo|R1,cpo

)
trends with probability

close to one for moderately optimistic, correct and pessimistic beliefs and becomes larger as agent 2

becomes more pessimistic.

To understand why pessimism exacerbates trending, we approximate the conditional equity pre-

mium, EPe
(
R2,cpo|R1,cpo

)
(ω), by

π∗ (L| ξ1)REcpo(ξ1, α
′
cpo (ξ0, α) (ξ1))(1) + π∗ (H| ξ1)REcpo(ξ1, α

′
cpo (ξ0, α) (ξ1))(2) if ξ1 ∈ {1, 2}

π∗ (L| ξ1) REcpo(ξ1, α
′
cpo (ξ0, α) (ξ1))(3) + π∗ (H| ξ1) REcpo(ξ1, α

′
cpo (ξ0, α) (ξ1))(4) if ξ1 ∈ {3, 4}

where π∗ (L| ξ1) ≡ (π∗ (1| ξ1) + π∗ (3| ξ1)) and π∗ (H| ξ1) ≡ (π∗ (2| ξ1) + π∗ (4| ξ1)). This approxima-

tion let us use the decomposition we introduce in (20) to explain trending.

To understand the impact of heterogeneous beliefs on the recession bias effect, note that for the

recession states, ξ′ ∈ {1, 3}, the (inverse of) market pessimism is

mcpo (ξ′ |ξ, α )

π∗ (ξ′ |ξ )
=

 βRFcpo (ξ, α) g (L)
−σ

θAJ (ξ′ |ξ, α )

(
π2(ξ′|ξ )
π∗(ξ′|ξ )

)
θBH (ξ′ |ξ, α ) if ε (ξ′) = ε (ξ) , ξ′ 6= ξ

βRFcpo (ξ, α) g (L)
−σ

θAJ (ξ′ |ξ, α ) o.w.
where θAJ (ξ′ |ξ, α ) > 1 and θBH (ξ′ |ξ, α ) < 1 are defined in Appendix C.3.

The market pessimism has four distinct ingredients: (1) the term θAJ (ξ′ |ξ, α ) that corrects

upwards the market belief of state ξ′ to reflect the increase in the marginal valuation of consumption

when, as in Alvarez and Jermann [3], the enforceability constraint binds due to a reversal in income

shares; (2) the risk-free interest rate, RFcpo (ξ′, α); (3) the ratio
π2(ξ′|ξ )
π∗(ξ′|ξ ) that adjusts the market belief

to reflect the incorrect belief of agent 2; (4) the term θBH (ξ′ |ξ, α ) that reflects the update in agent

2’s welfare weight induced by belief heterogeneity. We underscore that agent 2’s belief enters directly

only in (3) and (4).

Figure 14 plots the distribution of the recession bias effect for some pessimistic beliefs of agent 2.

Figure 14: Distribution of the Recession Bias Effect in CESC.

When beliefs are homogeneous, the recession bias effect is negative. Agent 2’s pessimism shifts the

distribution of the recession bias effect to the right. For π = 0.382 most of the mass is on the positive

values and more than 45% is on the upper bound of the support. These changes can be explained in

terms of the effect of agent 2’s pessimism through the aforementioned ingredients (3) and (4).

First, since pessimism affects the persistency of expansions only, it means that both π2 (1 |2)

and π2 (3 |4) increase while π2 (1 |1) and π2 (3 |3) remain constant. Consequently, the direct effect
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of pessimism is to increase the recession bias effect because only mcpo(1|2 )
π∗(1|2 ) and mcpo(3|4 )

π∗(3|4 ) are directly

affected. Second, pessimism makes the welfare weights of agent 2 in states 1 and 3 to increase with

respect to those in states 2 and 4, respectively. Consequently, pessimism induces a decrease in the

marginal rate of substitution between any expansion state and the state next period with the same

income share, decreasing the market belief about states 1 and 3 after states 2 and 4, respectively.

This is captured by the new term θBH (ξ′ |ξ, α ) < 1. This second effect reduces the recession bias

effect. Third, pessimism makes the interest rate to increase in expansions which makes the positive

differential in the interest rates between recessions and expansions to shrink and, so, it increases the

recession bias effect. When these three effect are added up, it turns out that the first and third

ones dominate and this explains why the market belief about a recession, mcpo (1 |ξ ) + mcpo (3 |ξ ),

increases more at an expansion than at a recession as agent 2 becomes more pessimistic. Since the

latter property implies that the ratio
π∗( 1|ξ′)+π∗( 3|ξ′)
mcpo(1|ξ )+mcpo(3|ξ ) decreases more at an expansion than at a

recession as agent 2 becomes more pessimistic, it explains why the market becomes more pessimistic

at expansions than at recessions as the beliefs of agent 2 become pessimistic enough.

Now we turn to study the impact of return inertia effect. Figure 15 plots the distribution of the

return inertia effect for different pessimistic beliefs of agent 2.

Figure 15: Distribution of the Return Inertia Effect in CESC.

When beliefs are homogeneous, the return inertia effect is degenerate, positive and small. As agent 2

becomes pessimistic, its distribution becomes nondegenerate and shifts to the right.

We conclude from Figures 14 and 15 that agent 2’s pessimism makes both the recession bias and

the return inertia effects stronger and that explains why the asset return displays larger trending than

in the economy with homogeneous beliefs.

7 Our Model at Work: Final Discussion

In this section we present a final discussion about the role played by belief heterogeneity to ex-

plain short-term momentum and long-term reversal. The columns of Table 2 below summarise our

main findings for short-term momentum (STM), long-term reversal (LTR), average equity premium

(E(RE −RF )) and the average risk-free rate (E(RF )). The β’s are calibrated to match the historical

average risk-free rate of 0.8% in the corresponding economy. The first row presents the U.S. data.

30



Table 2

STM LTR E(RE −RF ) E(RF )

U.S. Data (1900-2000) 13.9% −15.3% 6.18% 0.8%

CE

(i) σ = 8.9, β = 1.109 3% −0.43% 2.57% 0.8%

(ii) σ = 14.55, β = 1.107 1.31% −0.18% 6.18% 0.8%

CESC-AJ

(i) σ = 2.7, β = 0.860 2.14% −0.30% 1.02% 0.8%

(ii) σ = 4.5, β = 0.648 −0.07% 0.09% 6.24% 0.8%

CESC-HB

(i) π2 (2| 2) = 0.382, σ = 3, β = 0.756 9.74% −7.65% 6.18% 0.8%

(ii) π2 (2| 2) = 0.222, σ = 2, β = 0.767 14.18% −8.37% 6.20% 0.8%

The second and third row report the prediction of CE for two cases. The first case uses the value of

σ that delivers the largest STM. Since the signs of the autocorrelations are as in Table 1, the failure

of the CE is only quantitative because it produces correlations of an order of magnitude lower than

those observed in the data for STM (3% vs. 13.9%) and LTR (−0.43% vs. −15.3%). Not surprisingly,

the CE equity premium (2.57%) falls short at explaining the average equity premium of 6.18%. The

second case calibrates σ to match the average equity premium. In that case, the failure to explain

STM and LTR is only quantitative but is exacerbated.

The fourth and fifth row report the prediction of the CESC with homogeneous correct beliefs

(labelled CESC-AJ) for two cases where σ is chosen using the same criteria described above for CE.

The row labeled CESC-AJ (i) shows the predictions when σ is set to deliver the largest value for

STM. Once again, the failure of CESC with homogeneous beliefs is only quantitative since it produces

autocorrelations with the correct signs but one order of magnitude lower than those observed in the

data for STM (2.14% vs. 13.9%) and LTR (−0.30% vs. −15.3%). Moreover, the predicted equity

premium is far from the target. In the row labelled CESC-AJ (ii), σ is set to match the average equity

premium of 6.18%, the failure to explain these two anomalies is even starker than before since not

even the signs are correct.

Finally, the sixth and seventh rows consider CESC models with heterogeneous beliefs (labelled

CESC-HB) for two values of agent 2’s pessimism. In CESC-HB (i), both σ and β are calibrated to

match the equity premium and the risk-free rate when agent 2’s pessimism is relatively moderate,

i.e. π2 (2| 2) = 0.382 compared to π∗ (2| 2) = 0.682. For a reasonable degree of relative risk aversion,

σ = 3, the model predicts STM of 9.74% and LTR of−7.65%, a significant improvement with respect to

CE (ii) and CESC-AJ (ii). In CESC-HB (ii) we make agent 2’s pessimism stronger, π2 (2| 2) = 0.222.

The model predicts STM of 14.18% and LTR of −8.37% while the corresponding calibrated sigma σ

is quite moderate, i.e. σ = 2.
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Appendix A
In this Appendix we prove the results in Section 3. We begin with some definitions.

Let f : S × RI+ × P(Π)→ R+, ‖f‖ ≡ sup(ξ,α,µ) | f(ξ, α, µ) : α ∈ ∆I−1 | and

F ≡ {f : S × RI+ × P(Π)→ R+ : f is continuous and ‖f‖ <∞}.

FH ≡

{
f ∈ F : f(ξ, α, µ)−

I∑
i=1

αiUi(ξ, µi) ≥ 0 for all (ξ, α, µ), HOD 1 w.r.t. α

}
where HOD 1 stands for homogeneous of degree one. FH is a closed subset of the Banach space F

and thus a Banach space itself. Continuity is with respect to the weak topology and thus the metric

on F is induced by ‖.‖.
The following Lemma characterises the utility possibility set and follows from a reasoning analo-

gous to the one in Lemma 14 in Beker and Espino [5].

Lemma A.1. u ∈ UE(ξ, µ) if and only if ui ≥ Ui(ξ, µi) for all i and

min
α̃∈RI+

[
v∗(ξ, α̃, µ)−

I∑
i=1

α̃i ui

]
≥ 0.

Given (ξ, α, µ) ∈ S × RI+ × P(Π), we define the operator T on FH as follows

(Tf) (ξ, α, µ) = max
(c,w′(ξ′))

I∑
i=1

αi

ui(ci) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w′i(ξ

′)

 , (21)

subject to

ci ≥ 0,
I∑
i=1

ci = y(ξ), (22)

ui(ci) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w′i(ξ

′) ≥ Ui(ξ, µi), (23)

w′i(ξ
′) ≥ Ui(ξ′, µ′i(ξ, µ)(ξ′)) for all ξ′, (24)

min
α̃∈RI+

[
f(ξ′, α̃, µ′(ξ, µ)(ξ′))−

I∑
i=1

α̃i w
′
i(ξ
′)

]
≥ 0 for all ξ′ (25)

and α′(ξ′) solves (25).

Theorem 1 follows from Propositions A.2 and A.3. We say that f ∈ FH is preserved underT if

f(ξ, α, µ) ≤ (Tf) (ξ, α, µ) for all (ξ, α, µ).

Proposition A.2. If f ∈ FH is preserved under T , then (Tf) (ξ, α, µ) ≤ v∗(ξ, α, µ) for all (ξ, α, µ).

Proof. Let f ∈ FH and define W(ξ, µ)(f) as the constraint correspondence defined by (22)-(25)

evaluated at f and (ξ, µ).

Let
(
c̃0, (w̃

′
1(ξ′), α̃′1(ξ′))ξ′

)
∈ W(ξ, µ)(f). Since f is preserved under T , it follows from (25) that

I∑
i=1

α̃′i,1(s1)w̃′i,1(s1) ≤ f(s1, α̃
′
1(s1), µs1) ≤ (Tf)(s1, α̃

′
1(s1), µs1) (26)
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where the first inequality follows from (25) and the second one from the hypothesis. The second

inequality implies that there exists some
(
c̃1 (s1) , (w̃′2(s1, ξ

′), α̃′2(s1, ξ
′))ξ′

)
∈ W(s1, µs1)(f) such that

w̃′i,1(s1) = ui(c̃i,1 (s1)) + β(s1, µs1)
∑
ξ′

πµi,s1 (ξ′ |s1 ) w̃′i,2(s1,ξ
′) for all i

Following this strategy, one can construct a collection of functions {c̃t (st) , w̃t (st)} for all st and
t ≥ 1. Define, {ct}∞t=0 ∈ C(ξ) as follows:

c0 = c̃0, ct (s) = c̃t
(
st
)

for all s and t ≥ 1,

wt (s) = w̃t
(
st
)

for all s and t ≥ 1.

Since {ct}∞t=0 is feasible by construction, we show it is enforceable. By construction, we have that

∣∣Ui(ci)(st)− w̃′i,t(st)∣∣ ≤ β

∣∣∣∣∣∣
∑
ξ′

πµi,st (ξ
′ |st )

(
Ui(ci)(s

t, ξ′)− w̃′i,t(st, ξ′)
)∣∣∣∣∣∣

≤ βsup
ξ′

∣∣Ui(ci)(st, ξ′)− w̃′i,t(st, ξ′)∣∣
≤ β

k
sup

(ξ′1,...ξ
′
k)

∣∣Ui(ci)(st, ξ′1, ...ξ′k)− w̃′i,t(st, ξ′1, ...ξ′k)
∣∣ .

Since Ui(st, µi,st) ≤ w̃′i,t ≤ ‖f‖ <∞ for all i and t and Ui (·) is uniformly bounded, it follows that

∣∣Ui(ci)(st)− w̃′i,t(st)∣∣ ≤ lim sup
k→∞

{
β
k

sup
(ξ′1,...ξ

′
k)

∣∣Ui(ci)(st, ξ′1, ...ξ′k)− w̃′i,t(st, ξ′1, ...ξ′k)
∣∣}

= 0.

and consequently Ui(ci)(st) = w̃′i,t(s
t) for all i and all st. Finally, since by construction w̃′i,t(s

t) ≥
Ui(st, µi,st) for all i, we can conclude that {ct}∞t=0 is enforceable.

We conclude that for any arbitrary α ∈ RI+

I∑
i=1

αi

ui(c̃i,0) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w̃′i,1(ξ′)


=

I∑
i=1

αiui(ci,0) +

I∑
i=1

αiE
Pi
(
ρi,0 w

′
i,1

)
=

I∑
i=1

αiE
Pi

(
T∑
t=0

ρi,t ui(ci,t)

)
+

I∑
i=1

αiE
Pi
(
ρi,T+1 w

′
i,T+1

)
≤

I∑
i=1

αiE
Pi

(
T∑
t=0

ρi,t ui(ci,t)

)
+ β

T+1 ‖f‖ .

where the inequality follows from the first inequality in (26). Taking limits, we obtain

I∑
i=1

αi

ui(c̃i,0) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w̃′i,1(ξ′)

 ≤ I∑
i=1

αiE
Pi

( ∞∑
t=0

ρi,t ui(ci,t)

)
≤ v∗(ξ, α, µ).

where the first inequality follows because weak inequalities are preserved under limits and β ∈ (0, 1)

and the last one because {ct}∞t=0 is enforceable.

33



Since
(
c̃0, (w̃

′
1(ξ′), α̃′1(ξ′))ξ′

)
∈ W(ξ, µ)(f) is arbitrary,

I∑
i=1

αi

ui(c̃i,0) + β(ξ, µi)
∑
ξ′

πµ(ξ′ |ξ ) w̃′i,1(ξ′)

 ≤ v∗(ξ, α, µ),

for all
(
c̃0, (w̃

′
1(ξ′), α̃′1(ξ′))ξ′

)
∈ W(ξ, µ)(f). Therefore,

Tf(ξ, α, µ) = max
(c,w′)∈W(ξ,µ)

I∑
i=1

αi

ui(ci) + β(ξ, µi)
∑
ξ′

πµ(ξ′ |ξ ) w′i(ξ
′)


≤ v∗(ξ, α, µ).

as desired.

Proposition A.3. v∗ ∈ FH is preserved under T and v∗(ξ, α, µ) = (Tv∗) (ξ, α, µ) for all (ξ, α, µ).

Proof. Given (ξ, α, µ), take any u ∈ UE(ξ, µ) and let c ∈ C(ξ) denote the corresponding enforceable

feasible allocation. For each ξ′, ξ′ci ∈ C (ξ′) given by

ξ′ci(s
t) = ci(ξ

′, st) for all t ≥ 1,

denotes the ξ′−continuation of ci. For every t ≥ 1, let

Pi,ξ′(s
t) =

Pi(C(st))

πµi,st (ξ
′ |st )

,

and note that
I∑
i=1

αiU
Pi
i (ci) =

I∑
i=1

αi

ui(ci,0) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ))U

Pi,ξ′
i (ξ′ci)

 .

Since
(
U
Pi,ξ′
i (ξ′ci)

)I
i=1
∈ U(ξ′, µ′(ξ, µ)(ξ′)) for all ξ′, it follows by Lemma A.1 that

I∑
i=1

α′iU
Pi,ξ′
i (ξ′ci) ≤ v∗(ξ′, µ′(ξ, µ)(ξ′), α′) for all ξ′ and α′ ∈ ∆I−1

and so
I∑
i=1

αiU
Pi
i (ci) ≤ (Tv∗) (ξ, α, µ) for all ξ′ and α′ ∈ ∆I−1.

We conclude that v∗ is preserved under T since

v∗(ξ, α, µ) = sup
c∈Y∞

I∑
i=1

αiU
Pi
i (ci) ≤ (Tv∗) (ξ, α, µ) for all (ξ, α, µ).

It follows from Proposition A.2 that (Tv∗) (ξ, α, µ) ≤ v∗(ξ, α, µ) and so v∗(ξ, α, µ) = (Tv∗) (ξ, α, µ)

for all (ξ, α, µ).

Proof of Theorem 1. Since Proposition A.3 shows that v∗ is a fixed point of T , the rest of the proof

is analogous to that of Theorem 2 in Beker and Espino [5].
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Proof of Proposition 3. Note that Tn is a monotone operator for all n ≥ 1 (i.e., if f ≥ g then

Tnf ≥ Tng.) Let T̃ be the operator when the enforceability constraints are ignored. Theorem 2 in

Beker and Espino [5] show that T̃ has a unique fixed point, say ṽ.

Let {vn}∞n=0 be the sequence of functions defined by v0 = ṽ and vn = T (vn−1) for all n ≥ 1. Next

we show that vn ≥ vn+1 ≥ v∗ for all n. Indeed, since T (ṽ) ≤ T̃ (ṽ) = ṽ, it follows that v1 ≤ v0 and

vn+1 = Tn+1 (ṽ) = Tn (T ṽ) = Tn (v1) ≤ Tn (v0) = vn for all n,

vn+1 = Tn+1 (ṽ) ≥ Tn+1 (v∗) = v∗ for all n.

Since {vn}∞n=0 is a monotone decreasing sequence of uniformly bounded functions bounded below

by v∗, there exists a uniformly bounded function v∞ ≥ v∗ such that limn→∞ vn = v∞. To show that

v∞ ≤ v∗ we argue that v∞ is preserved under T and apply Proposition A.2.

Given (ξ, α, µ), v∞(ξ, α, µ) ≤ vn(ξ, α, µ) for all n and so there is
(
c̃n, (w̃

′
n(ξ′), α̃′n(ξ′))ξ′

)
∈

W (ξ, µ)(vn) such that

vn(ξ, α, µ) =

I∑
i=1

αi

ui(c̃i,n) + β(ξ, µi)
∑
ξ′

πµ(ξ′ |ξ ) w̃′i,n(ξ′)

 , for all n. (27)

Since
(
c̃n, (w̃

′
n(ξ′), α̃′n(ξ′))ξ′

)
lies in a compact set, it has a convergent subsequence with limit point(

c̃, (w̃′(ξ′), α̃′(ξ′))ξ′
)
.

Note that

vn(ξ′, α′(ξ, µ)(ξ′), µ′(ξ, µ)(ξ′))−
I∑
i=1

α′i w̃
′
i,n(ξ′) ≥ 0,

w̃′i,n(ξ′)− Ui(ξ, µi) ≥ 0,

for all n and all ξ′. Since weak inequalities are preserved in the limit

v∞(ξ′, α′(ξ, µ)(ξ′), µ′(ξ, µ)(ξ′))−
I∑
i=1

α′i w̃
′
i(ξ
′) ≥ 0,

w̃′i(ξ
′)− Ui(ξ, µi) ≥ 0,

and, therefore,
(
c̃, (w̃′(ξ′), α̃′(ξ′))ξ′

)
∈W (ξ, µ)(v∞). Consequently,

(Tv∞) (ξ, α, µ) ≥
I∑
i=1

αi

ui(c̃i(ξ)) + β(ξ, µi)
∑
ξ2

πµi(ξ
′ |ξ ) w̃′i(ξ

′)


= v∞(ξ, α, µ).

where the equality follows by (27) and continuity.

The following Lemma will be used in the proof of Proposition 4

Lemma A.4. If A1 and A3 holds, there exists N and α∗ such that (ξN (ω), αN (ω)) = (ξ∗, α∗) for all

ω ∈ {ω̃ : ξt(ω̃) = ξ∗ for t even, ξt(ω̃) = ξ∗∗ for t odd, 1 ≤ t ≤ N}.
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Proof. Let δ ≡ π1(ξ∗|ξ∗∗)
π2(ξ∗|ξ∗∗)

π1(ξ∗∗|ξ∗)
π2(ξ∗∗|ξ∗) . Consider the case in which δ > 1. Note that without loss of

generality we can assume π1(ξ∗∗|ξ∗)
π2(ξ∗∗|ξ∗) > 1. Let α∗1 ≡ max

α∈∆(ξ∗∗,µπ)
α′1,cpo(ξ

∗∗, α, µπ)(ξ∗). Let N∗ be the

smallest n ∈ N ∪ {0} satisfying

δn
α1(ξ∗, µπ)

1− α1(ξ∗, µπ)
≥ α∗1

1− α∗1
> δn−1 α1(ξ∗, µπ)

1− α1(ξ∗, µπ)
.

For any α ∈ ∆(ξ∗, µπ) such that α1 ≤ α∗1

α′1,cpo(ξ
∗, α, µπ)(ξ∗∗)

1− α′1,cpo(ξ∗, α, µπ)(ξ∗∗)
= max

{
α′1,po(ξ

∗, α, µπ)(ξ∗∗)

1− α′1,po(ξ∗, α, µπ)(ξ∗∗)
,

α1(ξ∗∗, µπ)

1− α1(ξ∗∗, µπ)

}

and so α′1,cpo(ξ∗, α, µπ)(ξ∗∗) ≥ α′1,po(ξ∗, α, µπ)(ξ∗∗). It follows that

α′1,cpo(ξ
∗∗, α′cpo(ξ

∗, α, µπ)(ξ∗∗), µπ)(ξ∗)

1− α′1,cpo(ξ∗∗, α′cpo(ξ∗, α, µπ)(ξ∗∗), µπ)(ξ∗)
≥

α′1,cpo(ξ
∗∗, α′po(ξ

∗, α, µπ)(ξ∗∗), µπ)(ξ∗)

1− α′1,cpo(ξ∗∗, α′po(ξ∗, α, µπ)(ξ∗∗), µπ)(ξ∗)

≥ π1(ξ∗|ξ∗∗)
π2(ξ∗|ξ∗∗)

α′1,po(ξ
∗, α, µπ)(ξ∗∗)

1− α′1,po(ξ∗, α, µπ)(ξ∗∗)

=
π1(ξ∗|ξ∗∗)
π2(ξ∗|ξ∗∗)

π1(ξ∗∗|ξ∗)
π2(ξ∗∗|ξ∗)

α1

1− α1

= δ
α1

1− α1
.

Let N ≡ 2(N∗ + 1). Consider ω ∈ Ω∗ ≡ {ω̃ : ξt(ω̃) = ξ∗ for t even, ξt(ω̃) = ξ∗∗ for t odd, 1 ≤ t ≤
N}. The sequence {α1,t(ω)} generated by α′cpo satisfies α1(ξ∗, µπ) ≤ α1,t(ω) ≤ α∗1 and, therefore,

α1,t+2(ω) ≥ δα1,t(ω) for all even t such that 2 ≤ t ≤ N. Thus, for any even t such that 2 ≤ t ≤ N

α1,t(ω) ≥ min

{
δ
t−2
2

α1,2(ω)

1− α1,2(ω)
,

α∗1
1− α∗1

}
and so it follows by the definition of N∗ that αN (ω) = α∗.

If δ < 1, we define α∗1 ≡ min
α∈∆(ξ∗∗,µπ)

α′1,cpo(ξ
∗∗, α, µπ)(ξ∗) and the proof is analogous to the case

δ > 1.

Proof of Proposition 4. The existence of a unique invariant distribution that is globally stable

follows by Theorem 11.12 in Stokey and Lucas [33]. It suffices to show that Fcpo satisfies the following

condition:

Condition M : There exists ε > 0 and an integer N ≥ 1 such that for any A ∈ S , either PN (s,A) ≥ ε,
all s ∈ S, or PN (s,Ac) ≥ ε, all s ∈ S.

Define N and α∗ as in Lemma A.4 and ε ≡ (min
ξ
π∗(ξ∗∗|ξ))

(
π∗(ξ∗|ξ∗∗)π∗(ξ∗∗|ξ∗)

)N
> 0. Let A ∈ S

and (ξ, α) ∈ Ω be arbitrary. If α∗ ∈ A, then PN ((ξ, α), A) ≥ PN ((ξ, α), α∗) ≥ ε by Lemma A.4. If

α∗ ∈ Ac, then PN ((ξ, α), Ac) ≥ PN ((ξ, α), α∗) ≥ ε by Lemma A.4 . To show the invariant distribution

is not degenerate note that α∗1 must be part of the support. If α∗1 6∈ ∆(ξ∗∗, µπ), the result follows

trivially. If α∗1 ∈ ∆(ξ∗∗, µπ), either α′1,cpo(ξ∗∗, α∗, µπ)(ξ∗) 6= α∗ or α′1,cpo(ξ∗, α∗, µπ)(ξ∗∗) 6= α∗.
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Proof of Proposition 5. Since risk-free rates are assumed to be positive and (ξ, α, µ) lies in a com-

pact set, it follows by continuity of RF that RFmin ≡ min(ξ,α,µ)R
F (ξ, α, µ) > 1. Let m (ξ′ |ξ, α, µ ) ≡

Q(ξ, α, µ)(ξ′)RF (ξ, α, µ) be the equivalent martingale measure.

Let f ∈ F and consider the operator Ti defined by

(Tif)(ξ, α, µ) = ci(ξ, α)− yi(ξ) +

∑
ξ′ m (ξ′ |ξ, α, µ ) f(ξ′, α′cpo(ξ, α, µ)(ξ′), µ′(ξ, µ)(ξ′))

RF (ξ, α, µ)
.

Step 1: We check that Ti : F → F.

Suppose that f ∈ F. Since α′ and µ′ are both continuous, then∑
ξ′ m (ξ′ |ξ, α, µ ) f(ξ′, α′cpo(ξ, α, µ)(ξ′), µ′(ξ, µ))

RF (ξ, α, µ)
, (28)

is continuous in (ξ, α, µ). Also, (28) is bounded because f and RF are both bounded. Since

|ci(ξ, α)− yi(ξ)| is uniformly bounded, we can conclude that (Tif) ∈ F .

Step 2: We check that Ti satisfies Blackwell’s sufficient conditions for a contraction mapping.

Discounting. Consider any a > 0 and note that

Ti(f + a)(ξ, α, µ) = ci(ξ, α)− yi(ξ) +

∑
ξ′ m (ξ′ |ξ, α, µ ) f(ξ′, α′cpo(ξ, α, µ)(ξ′), µ′(ξ, µ)(ξ′))

RF (ξ, α, µ)
+

a

RF (ξ, α, µ)

≤ (Tif)(ξ, α, µ) +
(
RFmin

)−1
a.

Monotonicity. If f(ξ, α, µ) ≥ g(ξ, α, µ) for all (ξ, α, µ), it is immediate that (Tif)(ξ, α, µ) ≥
(Tig)(ξ, α, µ) for all (ξ, α, µ).

Thus, we can apply the Contraction Mapping Theorem to conclude that Ti is a contraction with

a unique fixed point Ai ∈ F and that the fixed point is the unique solution to (11) for each i. Finally,

the same arguments used in Espino and Hintermaier [17] show that there exists α0 = α(s0, µ0) ∈ RI+
such that Ai(s0, α0, µ0) = 0 for all i.

Proof of Theorem 6. Given q and Bi, we argue that (ci, ai) satisfies (CESC 1).

First, we argue that (ci, ai) is in agent i’s budget set. Note that the solvency constrains are satisfied

by construction. Since as0i,−1 = 0 for all i, it follows by construction of (ci, ai) and the definition of Ai
that the sequential budget constraint is satisfied.

Next, we argue that (ci, ai) is optimal given q and Bi. Notice that (13) implies that

qξ
′

t (s) = max
h

{
β (st, µh,st) πµh,st (ξ

′ |st )
u′h(ch,t+1(s′))

u′h(ch,t(s))

}
where s′ ∈ C

(
st, ξ′

)
, (29)

≥ β (st, µi,st)πµi,st (ξ
′ |st )

u′i(ci,t+1(s′))

u′i(ci,t(s))
.

for all i (with equality if Ui(ci)(st) > Ui(st, µi,st−1)). Consider any alternative plan (c̃i, ãi) in agent

i’s budget set. It follows by concavity that

ui(ci,t)− ui(c̃i,t) ≥ u′i(ci,t) (ci,t − c̃i,t) (30)

while

ci,t(s)− c̃i,t(s) = asti,t−1(s)− ãsti,t−1(s) +
∑
ξ′

qξ
′

t (s)
(
ãξ
′

i,t(s)− a
ξ′

i,t(s)
)

= −bi,t(s) + b∗i,t(s),
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where bi,0 ≡ 0 and

bi,t(s) ≡ ãsti,t−1(s)− asti,t−1(s) = ãsti,t−1(s)−A(st, αt(s), µst) = ãsti,t−1(s)−Bsti,t−1(s) for t ≥ 1,

b∗i,t(s) ≡
∑
ξ′

qξ
′

t (s)
(
ãξ
′

i,t(s)− a
ξ′

i,t(s)
)

for t ≥ 0.

Note that
u′i(ci,t(s))b

∗
i,t = u′i(ci,t(s))

∑
ξ′

qξ
′

t (s)
(
ãξ
′

i,t(s)− a
ξ′

i,t(s)
)

=
∑
ξ′

u′i(ci,t(s))q
ξ′

t (s)
(
ãξ
′

i,t(s)− a
ξ′

i,t(s)
)

≥ EPi [βu′i(ci,t+1)bi,t+1| Ft] . (31)

where the inequality follows from (29). For T <∞, let ∆ ≡ EPi
(∑T

t=0 ρt (ui(ci,t)− ui(c̃i,t))
)
. Then,

∆ ≥ EPi
(

T∑
t=0

ρtu
′
i(ci,t) (ci,t − c̃i,t)

)

= EPi

(
T∑
t=0

ρtu
′
i(ci,t)

(
−bi,t + b∗i,t

))

= −EPi
[
T∑
t=0

ρtu
′
i(ci,t)bi,t

]
+ EPi

[
T∑
t=0

ρtu
′
i(ci,t)b

∗
i,t

]

= −EPi
[
T∑
t=0

ρtu
′
i(ci,t)bi,t

]
+ EPi

[
T∑
t=0

ρtE
Pi
[
u′i(ci,t)b

∗
i,t

∣∣Ft]]

≥ −EPi
[
T∑
t=0

ρtu
′
i(ci,t)bi,t

]
+ EPi

[
T∑
t=0

EPi [ρt+1 u
′
i(ci,t+1)bi,t+1| Ft]

]

= −EPi
[
T∑
t=0

ρtu
′
i(ci,t)bi,t

]
+ EPi

[
T∑
t=0

ρt+1u
′
i(ci,t+1)bi,t+1

]
,

where the first line uses (30), the fourth and last lines follows from the law of iterated expectations

and the inequality in the fifth line follows from (31). Since bi,0 = 0,

∆ ≡ EPi
[
T∑
t=0

ρt (ui(ci,t)− ui(c̃i,t))

]
≥ EPi [ρT+1u

′
i(ci,T+1(s))bi,T+1] .

Now we argue that bi,t is uniformly bounded. Since P(ΠK) is compact (in the weak topology),

the continuous functions αi(ξ, µ) and Ai(ξ, α, µ) and, therefore, Bξ
′

i,t is uniformly bounded for all ξ′.

So it suffices to show ãξ
′

i,t is uniformly bounded for all ξ′. Note that ãξ
′

i,t(s) is bounded below by Bξ
′

i,t(s)

and market clearing implies it is bounded above by −Bξ
′

j,t(s) for j 6= i.

It follows from the Dominated Convergence Theorem that

EPi

[ ∞∑
t=0

ρt (ui(ci,t)− ui(c̃i,t))

]
= lim

T→∞
EPi

[
T∑
t=0

ρt (ui(ci,t)− ui(c̃i,t))

]
≥ lim

T→∞
EPi [ρT+1u

′
i(ci,T+1)bi,T+1]

= 0.

since β(ξ, µ) ≤ β ∈ (0, 1) for all (ξ, µ). Consequently, given q and Bi, (ci, ai) solves agent i’s problem.

Finally, note that {ai} satisfies (CESC 2) since
∑I
i=1Ai(ξ, α, µ) = 0 for all (ξ, α, µ) (see (12)).
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Appendix B

In this Appendix we prove the results of Section 5.

Theorem B.1 (Stout [34] and Jensen and Rahbek [19]). Assume {zt}∞t=0 is a time homogeneous

Markov process with transition function F on (Z,Z). If there exists a unique invariant distribution

ψ : Z → [0, 1], then for any z0 ∈ Z , any integer k and any continuous function f : Zk → <,

lim
T→∞

1

T

T∑
t=1

f (zt, ..., zt+k) = EP
F (ψ,·) (f (z̃0, ..., z̃k)) , PF (z0, ·)− a.s.

Proof of Theorem 8. For the case of CPO allocations when agents have dogmatic priors, the result

follows directly from Proposition 4. So we only deal here with the case of PO. Under our assumptions

PO allocations can be parameterized by welfare weights. Let agent h be some agent whose prior

satisfies A2. A straightforward extension of Beker and Espino [5] to handle Markov uncertainty can

be used to show that the welfare weights associated with a PO allocation satisfy that for every agent

i and every path s ∈ S∞

αi,t (s) =
αi,0 Pi,t (s)∑I
j=1 αj,0 Pj,t (s)

=

αi,0 Pi,t (s)

αh,0 Ph,t (s)
I∑
i=1

αi,0 Pi,t (s)

αh,0 Ph,t (s)

and so the limit behaviour of the welfare weights depends on the limit behaviour of the likelihood

ratio
αi,0 Pi,t (s)

αh,0 Ph,t (s)
.

If h’s prior satisfies A1.a then one can use Sandroni’s results to show that, Pπ
∗ − a.s.,

αi,0 Pi,t (s)

αh,0 Ph,t (s)
→ αi,0

αh,0

µi (π∗)

µh (π∗)

while if h’s prior satisfies A1.b then one can use Phillip and Ploberger’s [28, Theorem 4.1] results to

show that, Pπ
∗ − a.s.,

αi,0 Pi,t (s)

αh,0 Ph,t (s)
→ αi,0

αh,0

fi (π∗)

fh (π∗)
.

It follows that αi,t (s)→ α∞, Pπ
∗ − a.s.

Since every agent’s prior satisfies A1, it is well known that there exists some π = (π1, ..., πI) where

πi ∈ ΠK such that µi,st converges weakly to µπi for Pπi−almost all s ∈ S∞ and πi is the element of

i’s support which is closer to π∗ in terms of entropy. By assumption A.2, πh = π∗.

Since convergence almost surely implies convergence in distribution, we conclude that, Pπ
∗ −a.s.,

the marginal distribution over welfare weights and beliefs converges to a mass point on (α∞, µ
π).
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Proof of Proposition 9. We need to show that

EPe
[
R1,e E

Pe
(
Rτ,e|R1,e

)]
(ω) > 0 if EPe

(
Rτ,e|R1,e

)
trends, (32)

EPe
[
R1,e E

Pe
(
Rτ,e|R1,e

)]
(ω) < 0 if EPe

(
Rτ,e|R1,e

)
reverts to the mean. (33)

Let Ωe be the support of Pe, Ω+ ≡
{
ω̃ ∈ Ωe : R1,e (ω̃) ≥ 0

}
and Ω− ≡

{
ω̃ ∈ Ωe : R1,e (ω̃) < 0

}
. Note

that

EPe
[
R1,e E

Pe
(
Rτ,e|R1,e

)]
(ω) = Pe

(
Ω+
)
EPe

[
R1,e E

Pe
(
Rτ,e|R1,e

)∣∣Ω+
]

+

Pe
(
Ω−
)
EPe

[
R1,e E

Pe
(
Rτ,e|R1,e

)∣∣Ω−]
and so EPe

[
R1,e E

Pe
(
Rτ,e|R1,e

)]
(ω) is bounded below by

Pe
(
Ω+
)
EPe

(
R1,e

∣∣Ω+
)

inf
ω̃∈Ω+

EPe
(
Rτ,e|R1,e

)
(ω̃) +

Pe
(
Ω−
)
EPe

(
R1,e

∣∣Ω−) sup
ω̃∈Ω−

EPe
(
Rτ,e|R1,e

)
(ω̃)

and above by

Pe
(
Ω+
)
EPe

(
R1,e

∣∣Ω+
)
sup
ω̃∈Ω+

EPe
(
Rτ,e|R1,e

)
(ω̃) +

Pe
(
Ω−
)
EPe

(
R1,e

∣∣Ω−) inf
ω̃∈Ω−

EPe
(
Rτ,e|R1,e

)
(ω̃)

If EPe
(
Rτ,e|R1,e

)
(ω) trends, then

inf
ω̃∈Ω+

EPe
(
Rτ,e|R1,e

)
(ω̃) > sup

ω̃∈Ω−
EPe

(
Rτ,e|R1,e

)
(ω̃)

and so (32) holds because

EPe
[
R1,e E

Pe
(
Rτ,e|R1,e

)]
(ω) >

(
Pe
(
Ω+
)
EPe

(
R1,e

∣∣Ω+
))

sup
ω̃∈Ω−

EPe
(
Rτ,e|R1,e

)
(ω̃) +(

Pe
(
Ω−
)
EPe

(
R1,e

∣∣Ω−)) sup
ω∈Ω−

EPe
(
Rτ,e|R1,e

)
(ω̃)

= EPe
(
R1,e

)
sup
ω̃∈Ω−

EPe
(
Rτ,e|R1,e

)
(ω̃)

= 0.

If EPe
(
Rτ,e|R1,e

)
(ω) reverts to the mean, then

sup
ω̃∈Ω+

EPe
(
Rτ,e|R1,e

)
(ω̃) < inf

ω∈Ω−
EPe

(
Rτ,e|R1,e

)
(ω)

and so (33) holds because

EPe
[
R1,e E

Pe
(
Rτ,e|R1,e

)]
(ω) <

(
Pe
(
Ω+
)
EPe

(
R1,e

∣∣Ω+
))

inf
ω̃∈Ω−

EPe
(
Rτ,e|R1,e

)
(ω̃) +(

Pe
(
Ω−
)
EPe

(
R1,e

∣∣Ω−)) inf
ω∈Ω−

EPe
(
Rτ,e|R1,e

)
(ω̃)

= EPe
(
R1,e

)
inf

ω̃∈Ω−
EPe

(
Rτ,e|R1,e

)
(ω̃)

= 0.
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Appendix C
Calibrated parameters:

π∗ =


0.1414 0.8200 0.0309 0.0077

0.2637 0.6820 0.0486 0.0057

0.0309 0.0077 0.1414 0.8200

0.0486 0.0057 0.2637 0.6820



st Endowments Growth Rates

1 0.6438 0.9602

2 0.6438 1.0402

3 0.3562 0.9602

4 0.3562 1.0402

C.1 Standard Model I: CE Allocations

The calibrated β is given by 1
1.008

∑
ξ ψpo (ξ)

(∑
ξ′ πh(ξ′ |ξ )g(ξ′)−σ

)−1

.

C.2 Standard Model II: CESC allocations - Homogeneous Beliefs

The invariant distribution is

State Probability[
1,
(
α1,cpo

(
1, µπ

∗)
, 1− α1,cpo

(
1, µπ

∗))]
0.1370[

2,
(
α1,cpo

(
2, µπ

∗)
, 1− α1,cpo

(
2, µπ

∗))]
0.0098[

2,
(
α1,cpo

(
1, µπ

∗)
, 1− α1,cpo

(
1, µπ

∗))]
0.3532[

3,
(
1− α2,cpo

(
3, µπ

∗)
, α2,cpo

(
3, µπ

∗))]
0.1370[

4,
(
1− α2,cpo

(
4, µπ

∗)
, α2,cpo

(
4, µπ

∗))]
0.0098[

4,
(
1− α2,cpo

(
3, µπ

∗)
, α2,cpo

(
3, µπ

∗))]
0.3532

θ̃AJ =

(
1− α̃2,cpo

(
3, µπ

∗)
α̃1,cpo (1, µπ∗)

)−σ
> 1 for ε (ξ′) 6= ε (ξ)

C.3 CESC allocations - Heterogeneous Beliefs

θAJ (ξ′ |ξ, α ) =


(

1−α1,cpo(1,µπ)

1−α1

)−σ
> 1 if ξ′ = 1 & ξ ∈ {3, 4} (ε (ξ′) 6= ε (ξ) )(

1−α2,cpo(3,µπ)

α1

)−σ
> 1 if ξ′ = 3 & ξ ∈ {1, 2} (ε (ξ′) 6= ε (ξ) )

1 o.w.

and

θBH (ξ′ |ξ, α ) =


[
min

(
π2( 1|2)

α1π∗( 1|2)+(1−α1)π2( 1|2) ,
1−α1,cpo(1,µπ)

1−α1

)]−σ
< 1 if ξ′ = 1 & ξ = 2 (ε (ξ′) = ε (ξ))[

min
(

π2( 3|4)
α1π∗( 3|4)+(1−α1)π2( 3|4) ,

1−α1,cpo(3,µπ)

1−α1

)]−σ
< 1 if ξ′ = 3 & ξ = 4 (ε (ξ′) = ε (ξ))
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Supplementary Material

Let ci(ξ, α) and w′i(ξ, α, µ)(ξ
′
) be the maximisers in problem (6) - (10) and let λi(ξ, α, µ) be the

Lagrange multiplier associated to constraint (8). Let

ũi(ξ, α, µ) = ui(ci(ξ, α)) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w′i(ξ, α, µ)(ξ′).

Claim 1. ũi(ξ, α, µ) is nondecreasing in αi for all α ∈ RI+.

Proof. Let α̃, α ∈ RI+ be such that α̃i > αi and α̃j = αj for every j 6= i. To get a contradiction,

suppose ũi(ξ, α̃, µ) < ũi (ξ, α, µ). Since the constrained set is independent of the welfare weights, then∑
h

α̃h (ũh (ξ, α̃, µ)− ũh (ξ, α, µ)) ≥ 0 and
∑
h

αh (ũh (ξ, α, µ)− ũh (ξ, α̃, µ)) ≥ 0

and so, on the one hand, ∑
h

(α̃h − αh) (ũh (ξ, α̃, µ)− ũh (ξ, α, µ)) ≥ 0

But, on the other hand,∑
h

(α̃h − αh) (ũh (ξ, α̃, µ)− ũh (ξ, α, µ)) = (α̃i − αi) (ũi (ξ, α̃, µ)− ũi (ξ, α, µ)) < 0

a contradiction.

Let ci(ξ, α) and w′i(ξ, α, µ)(ξ
′
) be the maximisers of the relaxed problem where (8) is ignored. Let

u(ξ, α, µ) = ui(ci(ξ, α)) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w′i(ξ, α, µ)(ξ′).

Claim 2. Let α ∈ RI+. If αi < α̃i and αh = α̃h for all h 6= i, then ui (ξ, α, µ) < ui (ξ, α̃, µ) .

Proof. Note that ci(ξ, α) is the unique solution to

ci +
∑
h6=i

(
∂uh
∂ch

)−1(
αi
αh

∂ui(ci)

∂ci

)
= y(ξ).

and so it is strictly increasing in αi. Therefore, ci(ξ, α̃) > ci(ξ, α). Note that

α′i(ξ, α, µ)(ξ′) =
αi
∫
π(ξ′ |ξ )µ′i(ξ, µ) (ξ′) (dπ)∑

h αh
∫
π(ξ′ |ξ )µ′h(ξ, µ) (ξ′) (dπ)

Thus, α′i(ξ, α, µ)(ξ′) is nondecreasing in αi. Since w′i(ξ, α, µ)(ξ
′
) satisfies (9) and (10), it follows by

Lemma A.1 and Theorem 1 that w′i(ξ, α, µ)(ξ
′
) = ui(ξ

′, α′(ξ, α, µ)(ξ′), µ′(ξ, µ)(ξ′)). Thus, Claim 1

implies that w′i(ξ, α̃, µ)(ξ
′
) ≥ w′i(ξ, α, µ)(ξ

′
) for all ξ′. We conclude that ui (ξ, α, µ) < ui (ξ, α̃, µ), as

desired.

1



Proof of Proposition 2 . (i) Suppose α ∈ ∆(ξ, µ). Consider first the case where αi > αi(ξ, µ) for all

i. By the definition of ũi(ξ, α, µ), we have that ũi(ξ, α, µ) ≥ Ui(ξ, µ) and
∑I
i αiũi(ξ, α, µ) = v∗ (ξ, α, µ).

It follows by Lemma A.1, that (ũ1(ξ, α, µ)...ũI(ξ, α, µ)) ∈ UE(ξ, µ). Since
∑I
i αiũi(ξ, α, µ) = v∗ (ξ, α, µ),

it is easy to see that (u1(ξ, α, µ)...uI(ξ, α, µ)) ∈ UE(ξ, µ). Then, ũi(ξ, α, µ) > Ui(ξ, µi) for all i by

definition of αi(ξ, µ). Thus, λi(ξ, α, µ) = 0. Let α ∈ ∆(ξ, µ) be such that αi = αi(ξ, µ) for some i.

Then there is a sequence {αn}∞n=1 such that αni > αi(ξ, µ) for all i and n and αn → α. It follows that

λi(ξ, α, µ) = λi(ξ, lim
n→∞

αn, µ) = lim
n→∞

λi(ξ, α
n, µ) = 0,

where the second equality follows by continuity of λi(ξ, α, µ) in α and the last one because weak in-

equalities are preserved under limits. It follows that, ũi(ξ, α, µ) = ui(ξ, α, µ) and so ci(ξ, α) = ci(ξ, α),

i.e. ci(ξ, α) solves the relaxed problem.

(ii) Let α ∈ RI+ and α∗ ≡
(

α1∑I
i=1 αi

... αI∑I
i=1 αi

)
. If α∗ ∈ ∆(ξ, µ), then ci(ξ, α) = ci(ξ, α

∗) because

ũi(ξ, α, µ) is homogeneous of degree zero in α. If α∗ 6∈ ∆(ξ, µ), there is i such that α∗i < αi(ξ, µ)
(
α∗−i

)
.

• First, we show that λi(ξ, α, µ) > 0. To get a contradiction, suppose λi(ξ, α, µ) = 0. It follows that

ũi (ξ, (αi, α−i) , µ) = ũi
(
ξ,
(
α∗i , α

∗
−i
)
, µ
)

= ui
(
ξ,
(
α∗i , α

∗
−i
)
, µ
)

= ui

(
ξ,

(
α∗i

αi(ξ, µ)
(
α∗−i

) , α∗−i
αi(ξ, µ)

(
α∗−i

)) , µ)

< ui

(
ξ,

(
1,

α∗−i
αi(ξ, µ)

(
α∗−i

)) , µ)
= ui

(
ξ,
(
αi(ξ, µ)

(
α∗−i

)
, α∗−i

)
, µ
)

= Ui(ξ, µ),

where the first equality follows because ũi is homogeneous of degree zero in α, the second one is

due to the assumption that λi(ξ, α, µ) = 0 and the homogeneity of degree zero of λi(ξ, α, µ) in α,

the third and fifth follows by homogeneity of degree zero of ui(·) in α, the inequality follows by

Claim 2 and the last equality follows by definition of the minimum enforceable weights. But then,

ũi (ξ, (αi, α−i) , µ) < Ui(ξ, µ) which contradicts constraint (8).

• Second, note that problem (6) - (10) is equivalent to maximising

I∑
i=1

(αi + λi)

ui(ci) + β(ξ, µi)
∑
ξ′

πµi(ξ
′ |ξ ) w′i(ξ

′)

 ,

subject to constraints (7), (9) and (10).

• Finally, the latter is equivalent to the relaxed problem with welfare weights α̃ given by

α̃i =
αi + λi(ξ, α, µ)∑I

h=1 (αh + λh(ξ, α, µ))
,

Thus, ui (ξ, α̃, µ) = ũi (ξ, α, µ) ≥ Ui(ξ, µ) = ui (ξ, αi, µ). It follows by Claim 2 that α̃i ≥ αi. Therefore,
α̃ ∈ ∆(ξ, µ) and ci(ξ, α) = ci(ξ, α̃) = ci(ξ, α̃) as desired.
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Now we prove Theorem 11. We begin with some results on Markov Processes.

Lemma 7.1. Let {zt}∞t=0 be a two-state time homogeneous Markov process with transition function

F on (Z,Z) and invariant distribution ψ : Z → [0, 1], PF be the probability measure on (Z∞,Z∞)

uniquely induced by F and ψ and let R : Z × Z → <. Suppose there exists z+ ∈ Z such that

(a) EP
F

(R (z1, z2)) = 0.

(b) R (z, z+) > 0 for all z.

(c) EP
F

(R (z0, z1) R (z1, z2)) > 0.

Then EP
F

(R(z2, z3)| z1 = z+) < 0 < EP
F

(R(z2, z3)| z1 = z−) iff F (z+| z+) < ψ (z+).

Proof. Hypothesis (a) and the Markov property implies that EP
F

(R (zk, zk+1)) = 0 for any k. Thus,

ψ (z−) EP
F

(R(zk′ , zk′+1)| zk = z−) = −ψ (z+) EP
F

(R(zk′ , zk′+1)| zk = z+) (34)

where z− 6= z+. Note also that

EP
F

(R (z0, z1) R (z1, z2)) = EP
F
(
R (z0, z1) EP

F

(R (z1, z2)| z1)
)

=
[
PF (z+, z+)R (z+, z+) + PF (z−, z+)R (z−, z+)

]
EP

F

(R (z1, z2)| z1 = z+)

+
[
PF (z+, z−)R (z+, z−) + PF (z−, z−)Re (z−, z−)

]
EP

F

(R (z1, z2)| z1 = z−) . (35)

By hypothesis (a) and (b), R (z, z−) < 0 for all z. Therefore,

PF (z+, z−)R (z+, z−) + PF (z−, z−)R (z−, z−) < 0,

PF (z+, z+)R (z+, z+) + PF (z−, z+)R (z−, z+) > 0.

It follows from (34) evaluated at k = 1 and k′ = 1, hypothesis (c) and (35) that

EP
F

(R(z1, z2)| z1 = z−) < 0 < EP
F

(R(z1, z2)| z1 = z+)

and the Markov Property implies

EP
F

(R(z2, z3)| z2 = z−) < 0 < EP
F

(R(z2, z3)| z2 = z+) . (36)

Condition (34), evaluated at k = 1 and k′ = 2, implies that

EP
F

(R(z2, z3)| z1 = z−) < 0 < EP
F

(R(z2, z3)| z1 = z+)⇔ EP
F

(R(z2, z3)| z1 = z+) > 0.

In addition,

EP
F

(R(z2, z3)| z1 = z+) = EP
F

(R(z2, z3)| z1 = z+)− EP
F

(R(z2, z3))

= (F (z2 = z+| z1 = z+)− ψ (z+))EP
F

(R(z2, z3)| z2 = z+)+

(F (z2 = z−| z1 = z+)− ψ (z−))EP
F

(R(z2, z3)| z2 = z−)

= (F (z2 = z+| z1 = z+)− ψ (z+))×(
EP

F

(R(z2, z3)| z2 = z+)− EP
F

(R(z2, z3)| z2 = z−)
)
.

where the first line follows by the definition of unconditional expectation and (a). (36) implies that

EP
F

(R(z2, z3)| z1 = z+) < 0⇔ F (z2 = z+| z1 = z+)− ψ (z+) < 0.
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Proof of Theorem 11(a). Consider any CE of an arbitrary baseline growth economy. Since the

allocation is PO, it follows by Theorem 8 that (15) holds and the marginal distribution of ψpo over

welfare weights is a point mass on α∞. By standard arguments, there exists Rpo : {l, h} × {l, h} → <
such that for any τ ∈ {1, 2} and ω ∈ Ω

Rτ,po (ω) =



Rpo (l, l) if ξτ−1(ω) ∈ {1, 3} and ξτ (ω) ∈ {1, 3}

Rpo (l, h) if ξτ−1(ω) ∈ {1, 3} and ξτ (ω) ∈ {2, 4}

Rpo (h, l) if ξτ−1(ω) ∈ {2, 4} and ξτ (ω) ∈ {1, 3}

Rpo (h, h) if ξτ−1(ω) ∈ {2, 4} and ξτ (ω) ∈ {2, 4}

and

Rpo (ξ, l) < 0 < Rpo (ξ, h) for all ξ ∈ {l, h} . (37)

Let Z = {l, h}, Z be its finest partition, π̃∗ be the transition function on (Z,Z) defined as the

restriction of π∗ to (Z,Z) and let ψ̃po be the restriction of the invariant measure ψpo to (Z,Z). Let

Z∞ be the set of infinite sequences with elements in Z and Z0 ⊂ Z1 ⊂ ... ⊂ Zt ⊂ ...Z∞ be the

standard filtration. P π̃
∗
is the probability measure over (Z∞,Z∞) uniquely induced by π̃∗ and ψ̃po.

Let zt : Z∞ → Z be Zt−measurable. The collection {zt}∞t=0 on the probability space
(
Z∞,Z∞, P π̃∗

)
is a two state time-homogeneous Markov process with transition function π̃∗ on (Z,Z) and invariant

distribution ψ̃po : Z × Z → [0, 1] satisfying

EP
π̃∗ (

Rpo (z1, z2)
)

= 0. (38)

First note that (38) and (37) are conditions (a) and (b), respectively, in Lemma 7.1. Second, since

the asset displays short-term momentum,

0 < EPpo
(
R1,po R2,po

)
= EP

π̃∗ (
Rpo (z0, z1) Rpo (z1, z2)

)
and so condition (c) in Lemma 7.1 also holds. By Lemma 7.1, we conclude that

EP
π̃∗ (

Rpo(z2, z3)
∣∣ z1 = h

)
< 0 < EP

π̃∗ (
Rpo(z2, z3)

∣∣ z1 = l
)
⇔ π̃∗ (h|h) < ψ̃po (h) . (39)

Let ω+ and ω− be such that R1,po (ω+) > 0 and R1,po (ω−) < 0. Then,

EPpo
(
R3,po

∣∣R1,po

) (
ω+
)

= EP
π̃∗ (

Rpo(z2, z3)
∣∣ z1 = h

)
,

EPpo
(
R3,po

∣∣R1,po

) (
ω−
)

= EP
π̃∗ (

Rpo(z2, z3)
∣∣ z1 = l

)
.

It follows from (39), π̃∗ (h|h) = π∗ (2| 2) + π∗ (4| 2) and ψ̃po (h) = ψpo (2) + ψpo (4) that

EPpo
(
R3,po

∣∣R1,po

) (
ω+
)
< 0 < EPpo

(
R3,po

∣∣R1,po

) (
ω−
)
⇔ π∗ (2| 2) + π∗ (4| 2) < ψpo (2) + ψpo (4)

that is, EPpo
(
R3,po

∣∣R1,po

)
reverts to the mean if and only if π∗ (2| 2) + π∗ (4| 2) < ψpo (2) + ψpo (4).

By Proposition 9, the asset displays long-term reversal if π∗ (2| 2) + π∗ (4| 2) < ψpo (2) + ψpo (4). To

show the converse, suppose that π∗ (2| 2)+π∗ (4| 2) ≥ ψpo (2)+ψpo (4). Then by the argument above,

EPe
(
R3,po|R1,e

)
trends and it follows by Proposition 9 that the 2nd-order autocorrelation is positive

and so long-run reversal fails.
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Proof of Theorem 11(b). Consider any CESC of an arbitrary baseline growth economy. The price

of an asset at state (ξ, α) must satisfy the Bellman equation:

p (ξ, α) =
∑
ξ′

Q (ξ, α) (ξ′) (p (ξ′, α′ (ξ, α) (ξ′)) + d (ξ′)) ψcpo − a.s.

It is easy to see that the invariant distribution places positive mass only on points (ξ, α) such that

α ∈ ∆ ∩ ∆
(
ξ, µπ

∗)
where ∆ = {(α1, α2) ∈ ∆ : ∃ξ ∈ S such that α1 = α1 (ξ) or α2 = α2 (ξ)} . The

hypothesis α1 (1) = α1 (2) and symmetry implies that α2 (3) = α2 (4). If pξ, qξξ′ and dξ denotes

p (ξ, α (ξ)), Q (ξ, α (ξ)) (ξ′) and d (ξ), respectively, then the Bellman equation becomes

pξ =
∑
ξ′

qξξ′ (pξ′ + dξ′) for all ξ

which can be written as (I −Q)P = QD where Q is the 4× 4 matrix with entries qξξ′ , P is the 4× 1

vector with entries pξ and D is the 4× 1 vector with entries pξ. Note that

c1(1, α (1)) = c2(3, α (3)) and c1(2, α (2)) = c2(4, α (4))

and so
qξ1 = β(ξ, µ) π(1 |ξ ) ∂u(c1(1,α(1))/∂c1

∂u(c1(ξ,α(ξ)))/∂c1
= β(ξ, µ) π(3 |ξ ) ∂u(c2(3,α(3))/∂c1

∂u(c2(ξ,α(ξ)))/∂c1
= qξ3,

qξ2 = β(ξ, µ) π(2 |ξ ) ∂u(c1(2,α(2))/∂c1
∂u(c1(ξ,α(ξ)))/∂c1

= β(ξ, µ) π(4 |ξ ) ∂u(c2(4,α(4))/∂c1
∂u(c2(ξ,α(ξ)))/∂c1

= qξ4.

It follows that Q has rank 2. Therefore, p1 = p3 and p2 = p4.

Let π̃∗ and (Z∞,Z∞) be the transition matrix and the measurable space, respectively, introduced

in the proof of Theorem 11(a). P π̃
∗
is the probability measure over (Z∞,Z∞) uniquely induced by

π̃∗ and ψ̃cpo. Let zt : Z∞ → Z be Zt−measurable. The collection {zt}∞t=0 on the probability space(
Z∞,Z∞, P π̃∗

)
is a two state time-homogeneous Markov process with transition function π̃∗ on (Z,Z)

and invariant distribution ψ̃cpo : Z × Z → [0, 1] .

Let p (l) ≡ p1, p (h) ≡ p2, Rcpo (z, z′) ≡ pz′+dz′
pz

for all z ∈ {l, h} and Rcpo : {l, h} × {l, h} → < be

such that

Rτ,cpo (ω) =



Rcpo (l, l) if ξτ−1(ω) ∈ {1, 3} and ξτ (ω) ∈ {1, 3}

Rcpo (l, h) if ξτ−1(ω) ∈ {1, 3} and ξτ (ω) ∈ {2, 4}

Rcpo (h, l) if ξτ−1(ω) ∈ {2, 4} and ξτ (ω) ∈ {1, 3}

Rcpo (h, h) if ξτ−1(ω) ∈ {2, 4} and ξτ (ω) ∈ {2, 4}

(40)

Moreover,

Rcpo (z, l) < 0 < Rcpo (z, h) for all z ∈ {l, h} (41)

and

EP
π̃∗ (

Rcpo (z1, z2)
)

= 0. (42)

It follows from (40) that for any k ∈ {2, 3}

EPcpo
(
R1,cpo Rk,cpo

)
= EP

π̃∗ (
Rcpo (z0, z1) Rcpo (z1, zk) .

Note that (42) and (41) are conditions (a) and (b) in Lemma 7.1. Since the asset displays short-term

momentum,

EP
π̃∗ (

Rcpo (z0, z1) Rcpo (z1, z2)
)

= EPcpo
(
R1,po R2,po

)
> 0,

and so (c) in Lemma 7.1 also holds. The rest of the proof is identical to that in Theorem 11(a).
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