Short-Term Momentum and Long-Term Reversal in General Equilibrium

Pablo F. Beker
Department of Economics University of Warwick

Department of Economics
Universidad Di Tella

November 2014
Work in Progress

Introduction

Financial Markets Anomalies

- Two well documented facts about financial markets:

Introduction

Financial Markets Anomalies

- Two well documented facts about financial markets:
- Asset returns display short-term momentum (positive autocorrelation) and long-term reversal (negative autocorrelation.)
Jegadeesh and Titman [JoF, 93].Cutler, Poterba andSummers [RStud, 91]; Fama and French [JofFE, 07];

Introduction

Financial Markets Anomalies

- Two well documented facts about financial markets:
- Asset returns display short-term momentum (positive autocorrelation) and long-term reversal (negative autocorrelation.)
Jegadeesh and Titman [JoF, 93].Cutler, Poterba andSummers [RStud, 91]; Fama and French [JofFE, 07];
- Autocorrelations of Stock market excess returns 1871-2012 (Shiller's Quarterly data):

Introduction

Financial Markets Anomalies

- Two well documented facts about financial markets:
- Asset returns display short-term momentum (positive autocorrelation) and long-term reversal (negative autocorrelation.)
Jegadeesh and Titman [JoF, 93].Cutler, Poterba andSummers [RStud, 91]; Fama and French [JofFE, 07];
- Autocorrelations of Stock market excess returns 1871-2012 (Shiller's Quarterly data):

Introduction

Financial Markets Anomalies

- Two well documented facts about financial markets:
- Asset returns display short-term momentum (positive autocorrelation) and long-term reversal (negative autocorrelation.)
Jegadeesh and Titman [JoF, 93].Cutler, Poterba andSummers [RStud, 91]; Fama and French [JofFE, 07];
- Autocorrelations of Stock market excess returns 1871-2012 (Shiller's Quarterly data):

Introduction

Financial Markets Anomalies

- There is a large recent literature trying to explain momentum and reversal (Ottaviani and Sorensen (2014), Albuquerque and Miao (2013), Makarov and Rytchkov (2012), Hong and Stein (1999, 2003), Barberis et al (1998), etc.)

Introduction

Financial Markets Anomalies

- There is a large recent literature trying to explain momentum and reversal (Ottaviani and Sorensen (2014), Albuquerque and Miao (2013), Makarov and Rytchkov (2012), Hong and Stein (1999, 2003), Barberis et al (1998), etc.)
- Our goals:

Introduction

Financial Markets Anomalies

- There is a large recent literature trying to explain momentum and reversal (Ottaviani and Sorensen (2014), Albuquerque and Miao (2013), Makarov and Rytchkov (2012), Hong and Stein (1999, 2003), Barberis et al (1998), etc.)
- Our goals:
(1) To explain in which sense the predictions of some ("standard") GE models (Lucas tree and Alvarez-Jermann models) are not consistent with these facts, i.e. positive autocorrelations of order 1 to 3 and negative autocorrelations of higher order.

Introduction

Financial Markets Anomalies

- There is a large recent literature trying to explain momentum and reversal (Ottaviani and Sorensen (2014), Albuquerque and Miao (2013), Makarov and Rytchkov (2012), Hong and Stein (1999, 2003), Barberis et al (1998), etc.)
- Our goals:
(1) To explain in which sense the predictions of some ("standard") GE models (Lucas tree and Alvarez-Jermann models) are not consistent with these facts, i.e. positive autocorrelations of order 1 to 3 and negative autocorrelations of higher order.
(2) To show that a GE model with belief heterogeneity AND binding borrowing constraints can yield predictions that are consistent with these facts.

Main Results

- We consider economies with and without Limited Enforceability.

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.
- Some agent might have the true distribution in her prior's support.

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.
- Some agent might have the true distribution in her prior's support.
- Competitive Equilibrium with Endogenous Borrowing Constraints (a la Alvarez-Jermann (Ecta, 2000), Kehoe-Levine (Restud, 1993)).

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.
- Some agent might have the true distribution in her prior's support.
- Competitive Equilibrium with Endogenous Borrowing Constraints (a la Alvarez-Jermann (Ecta, 2000), Kehoe-Levine (Restud, 1993)).
- Our analysis is based on a methodological contribution:

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.
- Some agent might have the true distribution in her prior's support.
- Competitive Equilibrium with Endogenous Borrowing Constraints (a la Alvarez-Jermann (Ecta, 2000), Kehoe-Levine (Restud, 1993)).
- Our analysis is based on a methodological contribution:
(1) A recursive characterisation of constrained PO (CPO) allocations in economies with limited enforceability \& belief heterogeneity.

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.
- Some agent might have the true distribution in her prior's support.
- Competitive Equilibrium with Endogenous Borrowing Constraints (a la Alvarez-Jermann (Ecta, 2000), Kehoe-Levine (Restud, 1993)).
- Our analysis is based on a methodological contribution:
(1) A recursive characterisation of constrained PO (CPO) allocations in economies with limited enforceability \& belief heterogeneity.
(2) A decentralisation of these allocations as competitive equilibria with (endogenous) solvency constraints (CESC).

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.
- Some agent might have the true distribution in her prior's support.
- Competitive Equilibrium with Endogenous Borrowing Constraints (a la Alvarez-Jermann (Ecta, 2000), Kehoe-Levine (Restud, 1993)).
- Our analysis is based on a methodological contribution:
(1) A recursive characterisation of constrained PO (CPO) allocations in economies with limited enforceability \& belief heterogeneity.
(2) A decentralisation of these allocations as competitive equilibria with (endogenous) solvency constraints (CESC).
- IF every agent knows the true dgp is Markov, THEN

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.
- Some agent might have the true distribution in her prior's support.
- Competitive Equilibrium with Endogenous Borrowing Constraints (a la Alvarez-Jermann (Ecta, 2000), Kehoe-Levine (Restud, 1993)).
- Our analysis is based on a methodological contribution:
(1) A recursive characterisation of constrained PO (CPO) allocations in economies with limited enforceability \& belief heterogeneity.
(2) A decentralisation of these allocations as competitive equilibria with (endogenous) solvency constraints (CESC).
- IF every agent knows the true dgp is Markov, THEN
(1) PO or CPO (homogeneous beliefs) allocations cannot generate both short-term momentum and long-term reversal.

Main Results

- We consider economies with and without Limited Enforceability.
- Pure exchange, many states, many infinitely lived-agents, heterogeneous beliefs.
- Some agent might have the true distribution in her prior's support.
- Competitive Equilibrium with Endogenous Borrowing Constraints (a la Alvarez-Jermann (Ecta, 2000), Kehoe-Levine (Restud, 1993)).
- Our analysis is based on a methodological contribution:
(1) A recursive characterisation of constrained PO (CPO) allocations in economies with limited enforceability \& belief heterogeneity.
(2) A decentralisation of these allocations as competitive equilibria with (endogenous) solvency constraints (CESC).
- IF every agent knows the true dgp is Markov, THEN
(1) PO or CPO (homogeneous beliefs) allocations cannot generate both short-term momentum and long-term reversal.
(2) CPO allocations with heterogeneous beliefs can generate both short-term momentum and long-term reversal.

A Simple Environment
 - Time:
 $$
t=0,1,2, \ldots
$$

A Simple Environment

- Time:

$$
t=0,1,2, \ldots
$$

- Paths:

$$
S^{\infty} \equiv\left\{s_{0}\right\} \times\{1, \ldots, S\}^{\infty} .
$$

A Simple Environment

- Time:

$$
t=0,1,2, \ldots
$$

- Paths:

$$
S^{\infty} \equiv\left\{s_{0}\right\} \times\{1, \ldots, S\}^{\infty} .
$$

- Public Information: $\quad F_{0} \subset \ldots \subset F_{t} \subset \ldots \subset F$.

A Simple Environment

- Time:

$$
t=0,1,2, \ldots
$$

- Paths:

$$
S^{\infty} \equiv\left\{s_{0}\right\} \times\{1, \ldots, S\}^{\infty} .
$$

- Public Information: $\quad F_{0} \subset \ldots \subset F_{t} \subset \ldots \subset F$.
- Endowment:

$$
y_{t}(s)=g\left(s_{t}\right) y_{t-1}(s)
$$

A Simple Environment

- Time:

$$
t=0,1,2, \ldots
$$

- Paths:

$$
S^{\infty} \equiv\left\{s_{0}\right\} \times\{1, \ldots, S\}^{\infty}
$$

- Public Information: $\quad F_{0} \subset \ldots \subset F_{t} \subset \ldots \subset F$.
- Endowment:
$y_{t}(s)=g\left(s_{t}\right) y_{t-1}(s)$
- Agents:
$i=1,2$.

A Simple Environment

- Time:

$$
t=0,1,2, \ldots
$$

- Paths:

$$
S^{\infty} \equiv\left\{s_{0}\right\} \times\{1, \ldots, S\}^{\infty}
$$

- Public Information: $\quad F_{0} \subset \ldots \subset F_{t} \subset \ldots \subset F$.
- Endowment:

$$
y_{t}(s)=g\left(s_{t}\right) y_{t-1}(s)
$$

- Agents:
$i=1,2$.
- Indiv. Endowment:

$$
y_{i, t}(s)=\epsilon_{i}\left(s_{t}\right) y_{t}(s) .
$$

A Simple Environment

- Time:

$$
t=0,1,2, \ldots
$$

- Paths:

$$
S^{\infty} \equiv\left\{s_{0}\right\} \times\{1, \ldots, S\}^{\infty}
$$

- Public Information: $\quad F_{0} \subset \ldots \subset F_{t} \subset \ldots \subset F$.
- Endowment:
$y_{t}(s)=g\left(s_{t}\right) y_{t-1}(s)$
- Agents:
$i=1,2$.
- Indiv. Endowment:

$$
y_{i, t}(s)=\epsilon_{i}\left(s_{t}\right) y_{t}(s) .
$$

- Subjective Prob. Space: $\left(S^{\infty}, F, P_{i}\right)$ where

$$
P_{i}(A)=P^{\pi_{i}}(A), \quad \pi_{i} \in(0,1) \quad \text { (DOGMATIC beliefs) }
$$

A Simple Environment

- Time:

$$
t=0,1,2, \ldots
$$

- Paths:

$$
S^{\infty} \equiv\left\{s_{0}\right\} \times\{1, \ldots, S\}^{\infty}
$$

- Public Information: $\quad F_{0} \subset \ldots \subset F_{t} \subset \ldots \subset F$.
- Endowment:
$y_{t}(s)=g\left(s_{t}\right) y_{t-1}(s)$
- Agents:
$i=1,2$.
- Indiv. Endowment:

$$
y_{i, t}(s)=\epsilon_{i}\left(s_{t}\right) y_{t}(s) .
$$

- Subjective Prob. Space: $\left(S^{\infty}, F, P_{i}\right)$ where

$$
P_{i}(A)=P^{\pi_{i}}(A), \quad \pi_{i} \in(0,1) \quad \text { (DOGMATIC beliefs) }
$$

- Preferences: $\quad u_{i}(x)$ and discount rate β

Constrained Pareto Optimality

- $Y^{\infty}\left(s_{0}\right)$ is the set of feasible allocations.

Constrained Pareto Optimality

- $Y^{\infty}\left(s_{0}\right)$ is the set of feasible allocations.
- A feasible allocation $\left\{c_{i}\right\}_{i=1}^{l}$ is enforceable if for every agent i

$$
U_{i}\left(c_{i}\right)\left(s^{t}\right) \geq U_{i}\left(s_{t}, \pi_{i}\right), \text { for all } t \text { and all } s^{t} .
$$

Constrained Pareto Optimality

- $Y^{\infty}\left(s_{0}\right)$ is the set of feasible allocations.
- A feasible allocation $\left\{c_{i}\right\}_{i=1}^{l}$ is enforceable if for every agent i

$$
U_{i}\left(c_{i}\right)\left(s^{t}\right) \geq U_{i}\left(s_{t}, \pi_{i}\right), \text { for all } t \text { and all } s^{t}
$$

- $Y_{E}^{\infty}\left(s_{0}\right) \subset Y^{\infty}\left(s_{0}\right)$ is the set feasible enforceable allocations.

Constrained Pareto Optimality

- $Y^{\infty}\left(s_{0}\right)$ is the set of feasible allocations.
- A feasible allocation $\left\{c_{i}\right\}_{i=1}^{\prime}$ is enforceable if for every agent i

$$
U_{i}\left(c_{i}\right)\left(s^{t}\right) \geq U_{i}\left(s_{t}, \pi_{i}\right), \text { for all } t \text { and all } s^{t}
$$

- $Y_{E}^{\infty}\left(s_{0}\right) \subset Y^{\infty}\left(s_{0}\right)$ is the set feasible enforceable allocations.
- $\left\{c_{i}\right\}_{i=1,2} \in Y_{E}^{\infty}\left(s_{0}\right)$ is Constrained Pareto Optimal (CPO) if there is no other $\left\{\widehat{c}_{i}\right\}_{i=1,2} \in Y_{E}^{\infty}\left(s_{0}\right)$ such that $U_{i}^{P_{i}}\left(\widehat{c}_{i}\right)>U_{i}^{P_{i}}\left(c_{i}^{*}\right)$ for all $i=1,2$.

An Economy with Growth

- $\widehat{c}_{i, t}(s)=c_{i, t}(s) / y_{t}(s)$,

An Economy with Growth

- $\widehat{c}_{i, t}(s)=c_{i, t}(s) / y_{t}(s)$,
- $\widehat{y}_{i, t}(s)=y_{i, t}(s) / y_{t}(s)=\epsilon_{i}\left(s_{t}\right)$.

An Economy with Growth

- $\hat{c}_{i, t}(s)=c_{i, t}(s) / y_{t}(s)$,
- $\widehat{y}_{i, t}(s)=y_{i, t}(s) / y_{t}(s)=\epsilon_{i}\left(s_{t}\right)$.
- $\widehat{y}_{t}(s)=\sum_{i=1}^{l} \widehat{y}_{i, t}(s)=1$.

An Economy with Growth

- $\widehat{c}_{i, t}(s)=c_{i, t}(s) / y_{t}(s)$,
- $\widehat{y}_{i, t}(s)=y_{i, t}(s) / y_{t}(s)=\epsilon_{i}\left(s_{t}\right)$.
- $\widehat{y}_{t}(s)=\sum_{i=1}^{l} \widehat{y}_{i, t}(s)=1$.
- For every agent i :

$$
\widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}\right)=u_{i}\left(\widehat{c}_{i, t}(s)\right)+\widehat{\beta}_{i}\left(s_{t}\right) \sum_{\widehat{\zeta}^{\prime}} \widehat{\pi}_{i}\left(\xi^{\prime} \mid s_{t}\right) \widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}, \xi^{\prime}\right),
$$

where

An Economy with Growth

- $\widehat{c}_{i, t}(s)=c_{i, t}(s) / y_{t}(s)$,
- $\widehat{y}_{i, t}(s)=y_{i, t}(s) / y_{t}(s)=\epsilon_{i}\left(s_{t}\right)$.
- $\widehat{y}_{t}(s)=\sum_{i=1}^{l} \widehat{y}_{i, t}(s)=1$.
- For every agent i :

$$
\widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}\right)=u_{i}\left(\widehat{c}_{i, t}(s)\right)+\widehat{\beta}_{i}\left(s_{t}\right) \sum_{\widehat{\zeta}^{\prime}} \widehat{\pi}_{i}\left(\xi^{\prime} \mid s_{t}\right) \widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}, \xi^{\prime}\right),
$$

where

An Economy with Growth

- $\hat{c}_{i, t}(s)=c_{i, t}(s) / y_{t}(s)$,
- $\widehat{y}_{i, t}(s)=y_{i, t}(s) / y_{t}(s)=\epsilon_{i}\left(s_{t}\right)$.
- $\widehat{y}_{t}(s)=\sum_{i=1}^{l} \widehat{y}_{i, t}(s)=1$.
- For every agent i :

$$
\widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}\right)=u_{i}\left(\widehat{c}_{i}(t)\right)+\widehat{\beta}_{i}\left(s_{t}\right) \sum_{\widehat{\zeta}^{\prime}} \widehat{\pi}_{i}\left(\xi^{\prime} \mid s_{t}\right) \widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}, \xi^{\prime}\right),
$$

where

$$
\hat{\pi}_{i}\left(\tilde{\xi}^{\prime} \mid s_{t}\right)=\frac{\pi_{i}\left(\tilde{\xi}^{\prime} \mid s_{t}\right) g\left(\tilde{\xi}^{\prime}\right)^{1-\sigma}}{\sum_{\tilde{\xi}} \pi_{i}\left(\tilde{\xi} \mid s_{t}\right) g(\tilde{\xi})^{1-\sigma}}
$$

An Economy with Growth

- $\hat{c}_{i, t}(s)=c_{i, t}(s) / y_{t}(s)$,
- $\widehat{y}_{i, t}(s)=y_{i, t}(s) / y_{t}(s)=\epsilon_{i}\left(s_{t}\right)$.
- $\widehat{y}_{t}(s)=\sum_{i=1}^{l} \widehat{y}_{i, t}(s)=1$.
- For every agent i :

$$
\widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}\right)=u_{i}\left(\widehat{c}_{i, t}(s)\right)+\widehat{\beta}_{i}\left(s_{t}\right) \sum_{\widehat{\zeta}^{\prime}} \widehat{\widehat{c}}_{i}\left(\tilde{\zeta}^{\prime} \mid s_{t}\right) \widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}, \xi^{\prime}\right),
$$

where

$$
\begin{aligned}
& \hat{\pi}_{i}\left(\tilde{\xi}^{\prime} \mid s_{t}\right)=\frac{\pi_{i}\left(\tilde{\xi}^{\prime} \mid s_{t}\right) g\left(\tilde{\xi}^{\prime}\right)^{1-\sigma}}{\sum_{\tilde{\xi}} \pi_{i}\left(\tilde{\xi} \mid s_{t}\right) g(\tilde{\xi})^{1-\sigma}} \\
& \widehat{\beta}_{i}\left(s_{t}\right)=\beta \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid s_{t}\right) g\left(\xi^{\prime}\right)^{1-\sigma} .
\end{aligned}
$$

An Economy with Growth

- $\widehat{c}_{i, t}(s)=c_{i, t}(s) / y_{t}(s)$,
- $\widehat{y}_{i, t}(s)=y_{i, t}(s) / y_{t}(s)=\epsilon_{i}\left(s_{t}\right)$.
- $\widehat{y}_{t}(s)=\sum_{i=1}^{l} \widehat{y}_{i, t}(s)=1$.
- For every agent i :

$$
\widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}\right)=u_{i}\left(\widehat{c}_{i, t}(s)\right)+\widehat{\beta}_{i}\left(s_{t}\right) \sum_{\widehat{\zeta}^{\prime}} \widehat{\pi}_{i}\left(\xi^{\prime} \mid s_{t}\right) \widehat{U}_{i}\left(\widehat{c}_{i}\right)\left(s^{t}, \xi^{\prime}\right),
$$

where

$$
\begin{aligned}
\hat{\pi}_{i}\left(\tilde{\xi}^{\prime} \mid s_{t}\right) & =\frac{\pi_{i}\left(\tilde{\zeta}^{\prime} \mid s_{t}\right) g\left(\xi^{\prime}\right)^{1-\sigma}}{\sum_{\tilde{\xi}} \pi_{i}\left(\tilde{\xi} \mid s_{t}\right) g(\tilde{\xi})^{1-\sigma}} \\
\widehat{\beta}_{i}\left(s_{t}\right) & =\beta \sum_{\xi^{\prime}} \pi_{i}\left(\tilde{\xi}^{\prime} \mid s_{t}\right) g\left(\tilde{\xi}^{\prime}\right)^{1-\sigma} .
\end{aligned}
$$

- As in Mehra and Prescott, expected utility is well defined if

$$
\begin{equation*}
\sup _{\xi, i}\left\{\beta \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) g\left(\xi^{\prime}\right)^{1-\sigma}\right\}<1 \tag{1}
\end{equation*}
$$

CPO Allocations: Recursive Representation

- Planner's Problem: $\quad v^{*}(\xi, \mu, \alpha)=\sup _{u \in \mathcal{U}(\xi)} \quad \sum_{i=1}^{2} \alpha_{i} u_{i}$,

CPO Allocations: Recursive Representation

- Planner's Problem: $\quad v^{*}(\xi, \mu, \alpha)=\sup _{u \in \mathcal{U}(\xi)} \quad \sum_{i=1}^{2} \alpha_{i} u_{i}$,
- v^{*} is a fixed point (not unique) of the operator T.

$$
\left.(T f)(\xi, \alpha)=\max _{\left\{c_{i}, w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}}\right\}_{i=1}^{2} \sum_{i=1}^{2} \alpha_{i}\left\{u_{i}\left(c_{i}\right)+\beta(\xi) \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}
$$

CPO Allocations: Recursive Representation

- Planner's Problem: $\quad v^{*}(\xi, \mu, \alpha)=\sup _{u \in \mathcal{U}(\xi)} \quad \sum_{i=1}^{2} \alpha_{i} u_{i}$,
- v^{*} is a fixed point (not unique) of the operator T.

$$
\left.(T f)(\xi, \alpha)=\max _{\left\{c_{i}, w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}}\right\}_{i=1}^{2} \sum_{i=1}^{2} \alpha_{i}\left\{u_{i}\left(c_{i}\right)+\beta(\xi) \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}
$$

CPO Allocations: Recursive Representation

- Planner's Problem: $\quad v^{*}(\xi, \mu, \alpha)=\sup _{u \in \mathcal{U}(\xi)} \quad \sum_{i=1}^{2} \alpha_{i} u_{i}$,
- v^{*} is a fixed point (not unique) of the operator T.

$$
\begin{aligned}
(T f)(\xi, \alpha)= & \max _{\left\{c_{i}, w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}_{i=1}^{2}} \sum_{i=1}^{2} \alpha_{i}\left\{u_{i}\left(c_{i}\right)+\beta(\xi) \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right)\right\} \\
& \int \sum_{i=1}^{2} c_{i}=y(\xi), c_{i} \geq 0
\end{aligned}
$$

CPO Allocations: Recursive Representation

- Planner's Problem: $\quad v^{*}(\xi, \mu, \alpha)=\sup _{u \in \mathcal{U}(\xi)} \quad \sum_{i=1}^{2} \alpha_{i} u_{i}$,
- v^{*} is a fixed point (not unique) of the operator T.

$$
\begin{aligned}
&(T f)(\xi, \alpha)= \max _{\left\{c_{i}, w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}_{i=1}^{2}} \sum_{i=1}^{2} \alpha_{i}\left\{u_{i}\left(c_{i}\right)+\beta(\xi) \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right)\right\} \\
& \text { s.t. } \begin{cases}\sum_{i=1}^{2} c_{i}=y(\xi), c_{i} \geq 0 & \forall i, \\
u_{i}\left(c_{i}\right)+\beta \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right) \geq U_{i}(\xi) & \forall i,\end{cases}
\end{aligned}
$$

CPO Allocations: Recursive Representation

- Planner's Problem: $\quad v^{*}(\xi, \mu, \alpha)=\sup _{u \in \mathcal{U}(\xi)} \quad \sum_{i=1}^{2} \alpha_{i} u_{i}$,
- v^{*} is a fixed point (not unique) of the operator T.

$$
\begin{aligned}
&(T f)(\xi, \alpha)=\max _{\left\{c_{i}, w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}_{i=1}^{2}} \sum_{i=1}^{2} \alpha_{i}\left\{u_{i}\left(c_{i}\right)+\beta(\xi) \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right)\right\} \\
& \text { s.t. } \begin{cases}\sum_{i=1}^{2} c_{i}=y(\xi), c_{i} \geq 0 & \forall i, \\
u_{i}\left(c_{i}\right)+\beta \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right) \geq U_{i}(\xi) & \forall i, \\
\widehat{w}^{\prime}\left(\xi^{\prime}\right) \in \mathcal{U}^{E}\left(\xi^{\prime}\right) & \forall \xi^{\prime}\end{cases}
\end{aligned}
$$

- T is not a contraction.

CPO Allocations: Recursive Representation

- Planner's Problem: $\quad v^{*}(\xi, \mu, \alpha)=\sup _{u \in \mathcal{U}(\xi)} \quad \sum_{i=1}^{2} \alpha_{i} u_{i}$,
- v^{*} is a fixed point (not unique) of the operator T.

$$
\begin{aligned}
&(T f)(\xi, \alpha)=\max _{\left\{c_{i}, w_{i}^{\prime}\left(\xi^{\prime}\right)\right\}_{i=1}^{2}} \sum_{i=1}^{2} \alpha_{i}\left\{u_{i}\left(c_{i}\right)+\beta(\xi) \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right)\right\} \\
& \text { s.t. } \begin{cases}\sum_{i=1}^{2} c_{i}=y(\xi), c_{i} \geq 0 & \forall i, \\
u_{i}\left(c_{i}\right)+\beta \sum_{\xi^{\prime}} \pi_{i}\left(\xi^{\prime} \mid \xi\right) w_{i}^{\prime}\left(\xi^{\prime}\right) \geq U_{i}(\xi) & \forall i, \\
\widehat{w}^{\prime}\left(\xi^{\prime}\right) \in \mathcal{U}^{E}\left(\xi^{\prime}\right) & \forall \xi^{\prime}\end{cases}
\end{aligned}
$$

- T is not a contraction.
- For any $v_{0}>v^{*}, v_{n}=T^{n} v_{0}$ converges from above to v^{*}.

The PO Law of Motion of the Welfare Weights

- ThePO Law of Motion

$$
\alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)=\frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right) \alpha_{i}}{\pi_{1}\left(\xi^{\prime} \mid \xi\right) \alpha_{1}+\pi_{2}\left(\xi^{\prime} \mid \xi\right) \alpha_{2}} \begin{cases}>\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right)}{\pi_{j}\left(\xi^{\prime} \mid \xi\right)}>1 \\ =\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right)}{\pi_{j}\left(\xi^{\prime} \mid \zeta \xi\right)}=1 \\ <\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid \zeta\right)}{\pi_{j}\left(\xi^{(} \mid \xi\right)}<1\end{cases}
$$

The PO Law of Motion of the Welfare Weights

- ThePO Law of Motion

$$
\alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)=\frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right) \alpha_{i}}{\pi_{1}\left(\xi^{\prime} \mid \xi\right) \alpha_{1}+\pi_{2}\left(\xi^{\prime} \mid \xi\right) \alpha_{2}} \begin{cases}>\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid \xi^{\prime}\right)}{\pi_{j}\left(\xi^{\prime} \mid \xi^{\prime}\right)}>1 \\ =\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right)}{\pi_{j}\left(\xi^{\prime} \mid \xi^{\prime}\right)}=1 \\ <\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid(\xi)\right.}{\pi_{j}\left(\xi^{\prime} \mid \xi\right)}<1\end{cases}
$$

- Theorem (Beker \& Espino, JET 2010): Suppose the true dgp is Markov. Then the welfare weights' distribution converges, $P^{\pi^{*}}-$ a.s., to a degenerate measure on

$$
\alpha_{\infty}=\left(\frac{\alpha_{1,0} \mu_{1}\left(\pi^{*}\right)}{\sum_{i \in I} \alpha_{i, 0} \mu_{i}\left(\pi^{*}\right)}, \ldots, \frac{\alpha_{l, 0} \mu_{I}\left(\pi^{*}\right)}{\sum_{i \in I} \alpha_{i, 0} \mu_{i}\left(\pi^{*}\right)}\right) .
$$

The PO Law of Motion of the Welfare Weights

- ThePO Law of Motion

$$
\alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)=\frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right) \alpha_{i}}{\pi_{1}\left(\xi^{\prime} \mid \xi\right) \alpha_{1}+\pi_{2}\left(\xi^{\prime} \mid \xi\right) \alpha_{2}} \begin{cases}>\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right)}{\pi_{j}\left(\xi^{\prime} \mid \zeta\right)}>1 \\ =\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right)}{\pi_{j}\left(\xi^{\prime} \mid \xi\right)}=1 \\ <\alpha_{i} & \text { if } \frac{\pi_{i}\left(\xi^{\prime} \mid \xi\right)}{\pi_{j}\left(\xi^{\prime} \mid \xi\right)}<1\end{cases}
$$

- Theorem (Beker \& Espino, JET 2010): Suppose the true dgp is Markov. Then the welfare weights' distribution converges, $P^{\pi^{*}}-$ a.s., to a degenerate measure on

$$
\alpha_{\infty}=\left(\frac{\alpha_{1,0} \mu_{1}\left(\pi^{*}\right)}{\sum_{i \in I} \alpha_{i, 0} \mu_{i}\left(\pi^{*}\right)}, \ldots, \frac{\alpha_{l, 0} \mu_{I}\left(\pi^{*}\right)}{\sum_{i \in I} \alpha_{i, 0} \mu_{i}\left(\pi^{*}\right)}\right) .
$$

- The Markov process $\left(s_{t}, \alpha_{t}\right)$ has a unique invariant measure $\Psi_{p o}$

The CPO Law of Motion of Welfare Weights

- CPO Law of Motion:

$$
K\left(\xi^{\prime}\right)=\left[\underline{\alpha}_{i}\left(\xi^{\prime}\right), 1-\underline{\alpha}_{j}\left(\xi^{\prime}\right)\right]
$$

The CPO Law of Motion of Welfare Weights

- CPO Law of Motion:

$$
K\left(\xi^{\prime}\right)=\left[\underline{\alpha}_{i}\left(\xi^{\prime}\right), 1-\underline{\alpha}_{j}\left(\xi^{\prime}\right)\right]
$$

The CPO Law of Motion of Welfare Weights

- CPO Law of Motion:
$K\left(\xi^{\prime}\right)=\left[\underline{\alpha}_{i}\left(\xi^{\prime}\right), 1-\underline{\alpha}_{j}\left(\xi^{\prime}\right)\right]$
$\alpha_{i, C P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)= \begin{cases}\underline{\alpha}_{i}\left(\xi, \mu^{\pi}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)<\underline{\alpha}_{i}\left(\xi, \mu^{\pi}\right) \\ \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right) \in K\left(\xi^{\prime}\right) \\ 1-\underline{\alpha}_{j}\left(\xi, \mu^{\pi}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)>1-\underline{\alpha}_{j}\left(\xi, \mu^{\pi}\right)\end{cases}$

The CPO Law of Motion of Welfare Weights

- CPO Law of Motion:
$K\left(\xi^{\prime}\right)=\left[\underline{\alpha}_{i}\left(\xi^{\prime}\right), 1-\underline{\alpha}_{j}\left(\xi^{\prime}\right)\right]$

$$
\alpha_{i, C P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)= \begin{cases}\underline{\alpha}_{i}\left(\xi, \mu^{\pi}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)<\underline{\alpha}_{i}\left(\xi, \mu^{\pi}\right) \\ \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right) \in K\left(\xi^{\prime}\right) \\ 1-\underline{\alpha}_{j}\left(\xi, \mu^{\pi}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)>1-\underline{\alpha}_{j}\left(\xi, \mu^{\pi}\right)\end{cases}
$$

- Theorem I: Suppose the true dgp is Markov and agents have (possibly heterogeneous) dogmatic beliefs. Then, the welfare weights' distribution converges, $P^{\pi^{*}}-$ a.s., to a non-degenerate measure on $K(1) \times \ldots \times K(S)$.

The CPO Law of Motion of Welfare Weights

- CPO Law of Motion:
$K\left(\xi^{\prime}\right)=\left[\underline{\alpha}_{i}\left(\xi^{\prime}\right), 1-\underline{\alpha}_{j}\left(\xi^{\prime}\right)\right]$

$$
\alpha_{i, C P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)= \begin{cases}\underline{\alpha}_{i}\left(\xi, \mu^{\pi}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)<\underline{\alpha}_{i}\left(\xi, \mu^{\pi}\right) \\ \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right) \in K\left(\xi^{\prime}\right) \\ 1-\underline{\alpha}_{j}\left(\xi, \mu^{\pi}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)>1-\underline{\alpha}_{j}\left(\xi, \mu^{\pi}\right)\end{cases}
$$

- Theorem I: Suppose the true dgp is Markov and agents have (possibly heterogeneous) dogmatic beliefs. Then, the welfare weights' distribution converges, $P^{\pi^{*}}-$ a.s., to a non-degenerate measure on $K(1) \times \ldots \times K(S)$.
- The consumption of every agent is bounded away from zero.

The CPO Law of Motion of Welfare Weights

- CPO Law of Motion:
$K\left(\xi^{\prime}\right)=\left[\underline{\alpha}_{i}\left(\xi^{\prime}\right), 1-\underline{\alpha}_{j}\left(\xi^{\prime}\right)\right]$

$$
\alpha_{i, C P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)= \begin{cases}\underline{\alpha}_{i}\left(\xi, \mu^{\pi}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)<\underline{\alpha}_{i}\left(\xi, \mu^{\pi}\right) \\ \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right) \in K\left(\xi^{\prime}\right) \\ 1-\underline{\alpha}_{j}\left(\xi, \mu^{\pi}\right) & \text { if } \alpha_{i, P O}^{\prime}(\xi, \alpha)\left(\xi^{\prime}\right)>1-\underline{\alpha}_{j}\left(\xi, \mu^{\pi}\right)\end{cases}
$$

- Theorem I: Suppose the true dgp is Markov and agents have (possibly heterogeneous) dogmatic beliefs. Then, the welfare weights' distribution converges, $P^{\pi^{*}}-$ a.s., to a non-degenerate measure on $K(1) \times \ldots \times K(S)$.
- The consumption of every agent is bounded away from zero.
- The Markov process $\left(s_{t}, \alpha_{t}\right)$ has a unique invariant measure $\Psi_{c p o}$.

Momentum and Reversal

- $r_{t+1}(s)=\frac{p_{t+1}(s)+d_{t+1}(s)}{p_{t}(s)}-r_{t}^{f}(s) \rightarrow$ return of the Mehra-Prescott asset.

Momentum and Reversal

- $r_{t+1}(s)=\frac{p_{t+1}(s)+d_{t+1}(s)}{p_{t}(s)}-r_{t}^{f}(s) \rightarrow$ return of the Mehra-Prescott asset.
- $\bar{r}_{T}(s) \equiv \frac{1}{T} \sum_{t=1}^{T} r_{t}(s) \quad \& \quad \sigma_{T}^{2} \equiv \frac{1}{T} \sum_{t=1}^{T}\left(r_{t}(s)-\bar{r}_{T}(s)\right)^{2}$

Momentum and Reversal

- $r_{t+1}(s)=\frac{p_{t+1}(s)+d_{t+1}(s)}{p_{t}(s)}-r_{t}^{f}(s) \rightarrow$ return of the Mehra-Prescott asset.
- $\bar{r}_{T}(s) \equiv \frac{1}{T} \sum_{t=1}^{T} r_{t}(s) \quad \& \quad \sigma_{T}^{2} \equiv \frac{1}{T} \sum_{t=1}^{T}\left(r_{t}(s)-\bar{r}_{T}(s)\right)^{2}$
- $\operatorname{cov}_{k, T}(s) \equiv \frac{1}{T} \sum_{t=1}^{T}\left(r_{t+1}(s)-\bar{r}_{T}(s)\right)\left(r_{t+k}(s)-\bar{r}_{T}(s)\right)$.

Momentum and Reversal

- $r_{t+1}(s)=\frac{p_{t+1}(s)+d_{t+1}(s)}{p_{t}(s)}-r_{t}^{f}(s) \rightarrow$ return of the Mehra-Prescott asset.
- $\bar{r}_{T}(s) \equiv \frac{1}{T} \sum_{t=1}^{T} r_{t}(s) \quad \& \quad \sigma_{T}^{2} \equiv \frac{1}{T} \sum_{t=1}^{T}\left(r_{t}(s)-\bar{r}_{T}(s)\right)^{2}$
- $\operatorname{cov}_{k, T}(s) \equiv \frac{1}{T} \sum_{t=1}^{T}\left(r_{t+1}(s)-\bar{r}_{T}(s)\right)\left(r_{t+k}(s)-\bar{r}_{T}(s)\right)$.
- $\rho_{k, T}(s) \equiv \frac{\operatorname{cov}_{k, T}(s)}{\sigma_{T}(s) \sigma_{T}(s)}$

Momentum and Reversal

- $r_{t+1}(s)=\frac{p_{t+1}(s)+d_{t+1}(s)}{p_{t}(s)}-r_{t}^{f}(s) \rightarrow$ return of the Mehra-Prescott asset.
- $\bar{r}_{T}(s) \equiv \frac{1}{T} \sum_{t=1}^{T} r_{t}(s) \quad \& \quad \sigma_{T}^{2} \equiv \frac{1}{T} \sum_{t=1}^{T}\left(r_{t}(s)-\bar{r}_{T}(s)\right)^{2}$
- $\operatorname{cov}_{k, T}(s) \equiv \frac{1}{T} \sum_{t=1}^{T}\left(r_{t+1}(s)-\bar{r}_{T}(s)\right)\left(r_{t+k}(s)-\bar{r}_{T}(s)\right)$.
- $\rho_{k, T}(s) \equiv \frac{\operatorname{cov}_{k, T}(s)}{\sigma_{T}(s) \sigma_{T}(s)}$
- Definition: An asset displays short-term momentum on s if

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \rho_{k, T}(s)>0 \text { for } k \in\{1,2,3\} \text { and long-term reversal on } s \text { if } \\
& \lim _{T \rightarrow \infty} \rho_{3, T}(s)<0 \text { for all } k \geq 4
\end{aligned}
$$

Momentum and Reversal

- In any CE or CESC, (s_{t}, α_{t}) summarizes history.

Momentum and Reversal

- In any CE or CESC, $\left(s_{t}, \alpha_{t}\right)$ summarizes history.
- Write $R_{e}\left(s_{t}, \alpha_{t}\right)\left(s_{t+1}\right)$ where $e \in\{p o, c p o\}$

Momentum and Reversal

- In any CE or CESC, $\left(s_{t}, \alpha_{t}\right)$ summarizes history.
- Write $R_{e}\left(s_{t}, \alpha_{t}\right)\left(s_{t+1}\right)$ where $e \in\{p o, c p o\}$
- Proposition: Suppose the true dgp is Markov and both agents know it. In any CESC, there is an invariant measure Ψ_{e} such that,

$$
\lim _{T \rightarrow \infty} \operatorname{cov}_{T, k}(s)=\operatorname{cov}^{P_{e}}\left(R_{1, e}, R_{k, e}\right) \quad P^{\pi^{*}}-\text { a.s. }
$$

where $P_{e} \equiv P_{e}^{F_{e}}\left(\Psi_{e}, \cdot\right)$ and F_{e} is the transition function of $\left(s_{t}, \alpha_{t}\right)$.

Statistical Characterization

- Let $\bar{R}_{1, e} \equiv R_{1, e}-E^{P_{e}}\left(R_{1, e}\right)$.

$$
\operatorname{cov}^{P_{e}}\left(R_{1, e}, R_{\tau, e}\right)=E^{P_{e}}\left[\bar{R}_{1, e} \cdot E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}\right)\right]
$$

Statistical Characterization

- Let $\bar{R}_{1, e} \equiv R_{1, e}-E^{P_{e}}\left(R_{1, e}\right)$.

$$
\operatorname{cov}^{P_{e}}\left(R_{1, e}, R_{\tau, e}\right)=E^{P_{e}}\left[\bar{R}_{1, e} \cdot E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}\right)\right]
$$

- $E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}\right) \rightarrow \tau$-period ahead conditional equity premium.

Statistical Characterization

- Let $\bar{R}_{1, e} \equiv R_{1, e}-E^{P_{e}}\left(R_{1, e}\right)$.

$$
\operatorname{cov}^{P_{e}}\left(R_{1, e}, R_{\tau, e}\right)=E^{P_{e}}\left[\bar{R}_{1, e} \cdot E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}\right)\right]
$$

- $E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}\right) \rightarrow \tau$-period ahead conditional equity premium.
- Definition: The τ - period ahead conditional equity premium "trends" if

$$
E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}>0\right)>E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}<0\right) .
$$

and "reverts" if the inequality above is reversed.

Statistical Characterization

- Let $\bar{R}_{1, e} \equiv R_{1, e}-E^{P_{e}}\left(R_{1, e}\right)$.

$$
\operatorname{cov}^{P_{e}}\left(R_{1, e}, R_{\tau, e}\right)=E^{P_{e}}\left[\bar{R}_{1, e} \cdot E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}\right)\right]
$$

- $E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}\right) \rightarrow \tau$-period ahead conditional equity premium.
- Definition: The τ - period ahead conditional equity premium "trends" if

$$
E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}>0\right)>E^{P_{e}}\left(R_{\tau, e} \mid \bar{R}_{1, e}<0\right)
$$

and "reverts" if the inequality above is reversed.

- Proposition: If the τ-period ahead conditional equity premium trends, then the τ-order autocorrelation is positive. If the τ-period ahead conditional equity premium reverts, then the τ-order autocorrelation is negative.

Some Economics of Trending

- The market belief is:

$$
m_{e}\left(\xi^{\prime} \mid \xi, \alpha\right)=\frac{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)+Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}=\underbrace{R_{e}^{F}(\xi, \alpha)}_{\text {risk-free rate }} \underbrace{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}_{A D-\text { price }}>0 .>0
$$

Some Economics of Trending

- The market belief is:

$$
m_{e}\left(\xi^{\prime} \mid \xi, \alpha\right)=\frac{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)+Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}=\underbrace{R_{e}^{F}(\xi, \alpha)}_{\text {risk-free rate }} \underbrace{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}_{A D-\text { price }}>0 .>0
$$

- $E^{m_{e}}\left(R_{k, e} \mid \xi, \alpha\right)=0 \quad$ (no arbitrage)

Some Economics of Trending

- The market belief is:

$$
m_{e}\left(\xi^{\prime} \mid \xi, \alpha\right)=\frac{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)+Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}=\underbrace{R_{e}^{F}(\xi, \alpha)}_{\text {risk-free rate }} \underbrace{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}_{A D-\text { price }}>0 .>0
$$

- $E^{m_{e}}\left(R_{k, e} \mid \xi, \alpha\right)=0 \quad$ (no arbitrage)
- $E^{P_{e}}\left(R_{k, e} \mid \xi, \alpha\right)(\cdot)=E^{m_{e}}\left(\left.\frac{\pi_{k}^{*}}{m_{k, e}} R_{k, e} \right\rvert\, \xi, \alpha\right)$

Some Economics of Trending

- The market belief is:

$$
m_{e}\left(\xi^{\prime} \mid \xi, \alpha\right)=\frac{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)+Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}=\underbrace{R_{e}^{F}(\xi, \alpha)}_{\text {risk-free rate }} \underbrace{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}_{A D-\text { price }}>0 .>0
$$

- $E^{m_{e}}\left(R_{k, e} \mid \xi, \alpha\right)=0 \quad$ (no arbitrage)
- $E^{P_{e}}\left(R_{k, e} \mid \xi, \alpha\right)(\cdot)=E^{m_{e}}\left(\left.\frac{\pi_{k}^{*}}{m_{k, e}} R_{k, e} \right\rvert\, \xi, \alpha\right)$
- For $\rho_{1}>0$ it suffices that

Some Economics of Trending

- The market belief is:

$$
m_{e}\left(\xi^{\prime} \mid \xi, \alpha\right)=\frac{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)+Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}=\underbrace{R_{e}^{F}(\xi, \alpha)}_{\text {risk-free rate }} \underbrace{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}_{A D-\text { price }}>0 .>0
$$

- $E^{m_{e}}\left(R_{k, e} \mid \xi, \alpha\right)=0 \quad$ (no arbitrage)
- $E^{P_{e}}\left(R_{k, e} \mid \xi, \alpha\right)(\cdot)=E^{m_{e}}\left(\left.\frac{\pi_{k}^{*}}{m_{k, e}} R_{k, e} \right\rvert\, \xi, \alpha\right)$
- For $\rho_{1}>0$ it suffices that

Some Economics of Trending

- The market belief is:

$$
m_{e}\left(\xi^{\prime} \mid \xi, \alpha\right)=\frac{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)+Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}=\underbrace{R_{e}^{F}(\xi, \alpha)}_{\text {risk-free rate }} \underbrace{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}_{A D-\text { price }}>0 .>0
$$

- $E^{m_{e}}\left(R_{k, e} \mid \xi, \alpha\right)=0 \quad$ (no arbitrage)
- $E^{P_{e}}\left(R_{k, e} \mid \xi, \alpha\right)(\cdot)=E^{m_{e}}\left(\left.\frac{\pi_{k}^{*}}{m_{k, e}} R_{k, e} \right\rvert\, \xi, \alpha\right)$
- For $\rho_{1}>0$ it suffices that

$$
\begin{gather*}
E^{P_{e}}\left(R_{2, e} \mid \bar{R}_{1, e}>0\right)>E^{P_{e}}\left(R_{2, e} \mid \bar{R}_{1, e}<0\right) \tag{2}\\
\Uparrow \\
E^{m_{e}}\left(\left.\frac{\pi_{2}^{*}}{m_{2, e}} R_{2, e} \right\rvert\, \bar{R}_{1, e}>0\right)>E^{m_{e}}\left(\left.\frac{\pi_{2}^{*}}{m_{2, e}} R_{2, e} \right\rvert\, \bar{R}_{1, e}<0\right)
\end{gather*}
$$

Some Economics of Trending

- The market belief is:

$$
m_{e}\left(\xi^{\prime} \mid \xi, \alpha\right)=\frac{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)+Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}=\underbrace{R_{e}^{F}(\xi, \alpha)}_{\text {risk-free rate }} \underbrace{Q_{e}(\xi, \alpha)\left(\xi^{\prime}\right)}_{A D-\text { price }}>0 .>0
$$

- $E^{m_{e}}\left(R_{k, e} \mid \xi, \alpha\right)=0 \quad$ (no arbitrage)
- $E^{P_{e}}\left(R_{k, e} \mid \xi, \alpha\right)(\cdot)=E^{m_{e}}\left(\left.\frac{\pi_{k}^{*}}{m_{k, e}} R_{k, e} \right\rvert\, \xi, \alpha\right)$
- For $\rho_{1}>0$ it suffices that

$$
\begin{gather*}
E^{P_{e}}\left(R_{2, e} \mid \bar{R}_{1, e}>0\right)>E^{P_{e}}\left(R_{2, e} \mid \bar{R}_{1, e}<0\right) \tag{2}\\
\Uparrow \\
E^{m_{e}}\left(\left.\frac{\pi_{2}^{*}}{m_{2, e}} R_{2, e} \right\rvert\, \bar{R}_{1, e}>0\right)>E^{m_{e}}\left(\left.\frac{\pi_{2}^{*}}{m_{2, e}} R_{2, e} \right\rvert\, \bar{R}_{1, e}<0\right)
\end{gather*}
$$

- Roughly speaking, the one-period-ahead conditional equity premium trends if the market is more pessimistic (about a positive return) conditional on a positive return than on a negative one.

1st order trending: PO

- Let $\operatorname{corr}_{a}(g)$ be the agents' belief (possibly incorrect) about the autocorrelation of the growth rate.

1st order trending: PO

- Let $\operatorname{corr}_{a}(g)$ be the agents' belief (possibly incorrect) about the autocorrelation of the growth rate.
- Note that in any PO allocation:

1st order trending: PO

- Let $\operatorname{corr}_{a}(g)$ be the agents' belief (possibly incorrect) about the autocorrelation of the growth rate.
- Note that in any PO allocation:
(1) For any α,

$$
R_{p o}(\xi, \alpha)\left(\xi^{\prime}\right) \text { depends only on } g(\xi) \text { and } g\left(\xi^{\prime}\right)
$$

1st order trending: PO

- Let $\operatorname{corr}_{a}(g)$ be the agents' belief (possibly incorrect) about the autocorrelation of the growth rate.
- Note that in any PO allocation:
(1) For any α,

$$
R_{p o}(\xi, \alpha)\left(\xi^{\prime}\right) \text { depends only on } g(\xi) \text { and } g\left(\xi^{\prime}\right)
$$

(2) for any ξ,

$$
R_{p o}(\xi)(H)>0>R_{p o}(\xi)(L) \Leftrightarrow \beta \operatorname{corr}_{a}(g) \leq \frac{g(L)^{-1}-g(H)^{-1}}{g(L)^{-\sigma}-g(H)^{-\sigma}} .
$$

1st order trending: PO

- Let $\operatorname{corr}_{a}(g)$ be the agents' belief (possibly incorrect) about the autocorrelation of the growth rate.
- Note that in any PO allocation:
(1) For any α,

$$
R_{p o}(\xi, \alpha)\left(\xi^{\prime}\right) \text { depends only on } g(\xi) \text { and } g\left(\xi^{\prime}\right)
$$

(2) for any ξ,

$$
R_{p o}(\xi)(H)>0>R_{p o}(\xi)(L) \Leftrightarrow \beta \operatorname{corr}_{a}(g) \leq \frac{g(L)^{-1}-g(H)^{-1}}{g(L)^{-\sigma}-g(H)^{-\sigma}} .
$$

- Proposition: Suppose growth is uncorrelated and $\operatorname{corra}_{a}(g) \leq 0$. If $R_{p o}(H)(H) \geq R_{e}(L)(H)$, then the first order autocorrelation of returns is non-negative.

Autocorrelations of higher order

- Property G:

Autocorrelations of higher order

- Property G:
(1) The autocorrelations of returns do not change sign if the (true) 1st order autocorrelation of the growth rate is positive.

Autocorrelations of higher order

- Property G:
(1) The autocorrelations of returns do not change sign if the (true) 1st order autocorrelation of the growth rate is positive.
(2) The autocorrelations of returns alternate signs if the (true) 1 st order autocorrelation of the growth rate is negative.

Autocorrelations of higher order

- Property G:
(1) The autocorrelations of returns do not change sign if the (true) 1st order autocorrelation of the growth rate is positive.
(2) The autocorrelations of returns alternate signs if the (true) 1st order autocorrelation of the growth rate is negative.
(3) The autocorrelations of returns of order $k \geq 2$ are all zero if the (true) 1st order autocorrelation of the growth rate is zero.

Autocorrelations of higher order

- Property G:
(1) The autocorrelations of returns do not change sign if the (true) 1st order autocorrelation of the growth rate is positive.
(2) The autocorrelations of returns alternate signs if the (true) 1 st order autocorrelation of the growth rate is negative.
(3) The autocorrelations of returns of order $k \geq 2$ are all zero if the (true) 1 st order autocorrelation of the growth rate is zero.
- Theorem II Property G holds in
(a) any Pareto Optimal equilibrium with $S=4$
(b) any CPO equilibrium with $S=4$ and $\underline{\alpha}_{1}(1)=\underline{\alpha}_{1}(2)$

Autocorrelations of higher order

- Property G:
(1) The autocorrelations of returns do not change sign if the (true) 1st order autocorrelation of the growth rate is positive.
(2) The autocorrelations of returns alternate signs if the (true) 1st order autocorrelation of the growth rate is negative.
(3) The autocorrelations of returns of order $k \geq 2$ are all zero if the (true) 1 st order autocorrelation of the growth rate is zero.
- Theorem II Property G holds in
(a) any Pareto Optimal equilibrium with $S=4$
(b) any CPO equilibrium with $S=4$ and $\underline{\alpha}_{1}(1)=\underline{\alpha}_{1}(2)$
- Remark: states 1 and 2 in (b) are those where agent 1 is rich.

Calibrated Economy

- By symmetry, there are free 10 parameters to be selected: six for π^{*}, two for $y_{1}(\cdot)$ and two for $g(\cdot)$.

Calibrated Economy

- By symmetry, there are free 10 parameters to be selected: six for π^{*}, two for $y_{1}(\cdot)$ and two for $g(\cdot)$.
- We calibrate the model so that the quarterly growth rate of output is uncorrelated and displays the same mean, standard deviation and frequency of recessions as in the US data for 1948-2007.

Calibrated Economy

- By symmetry, there are free 10 parameters to be selected: six for π^{*}, two for $y_{1}(\cdot)$ and two for $g(\cdot)$.
- We calibrate the model so that the quarterly growth rate of output is uncorrelated and displays the same mean, standard deviation and frequency of recessions as in the US data for 1948-2007.
- We calibrated the remaining parameters to match the same 6 moments of the household income data that Alvarez and Jermann (RFS, 2001) used.

Empirical Autocorrelations

- Quarterly autocorrelations of stock market excess returns (Shiller's data):

Empirical Autocorrelations

- Quarterly autocorrelations of stock market excess returns (Shiller's data):

Empirical Autocorrelations

- Quarterly autocorrelations of stock market excess returns (Shiller's data):

PO Allocations

PO Allocations

- For each belief about $\pi^{*}(2 \mid 2)$, we choose $\beta=.99$ and σ to match the Equity Premium of 5.91%.

Our Model at Work: CESC-Heterogeneous I

- Agent 1 has correct beliefs.

Our Model at Work: CESC-Heterogeneous I

- Agent 1 has correct beliefs.
- Agent 2 has beliefs

$$
\pi_{2}=\pi^{*}+\left[\begin{array}{cccc}
-\varepsilon_{1} & \varepsilon_{1} & 0 & 0 \\
\varepsilon_{2} & -\varepsilon_{2} & 0 & 0 \\
0 & 0 & -\varepsilon_{1} & \varepsilon_{1} \\
0 & 0 & \varepsilon_{2} & -\varepsilon_{2}
\end{array}\right]
$$

where $\varepsilon_{\xi} \in\left[\pi\left(\xi^{\prime} \mid \xi\right), \pi(\xi \mid \xi)\right]$ for $\xi \in\{1,2\}$.

Our Model at Work: CESC-Heterogeneous I

- Agent 1 has correct beliefs.
- Agent 2 has beliefs

$$
\pi_{2}=\pi^{*}+\left[\begin{array}{cccc}
-\varepsilon_{1} & \varepsilon_{1} & 0 & 0 \\
\varepsilon_{2} & -\varepsilon_{2} & 0 & 0 \\
0 & 0 & -\varepsilon_{1} & \varepsilon_{1} \\
0 & 0 & \varepsilon_{2} & -\varepsilon_{2}
\end{array}\right]
$$

where $\varepsilon_{\xi} \in\left[\pi\left(\xi^{\prime} \mid \xi\right), \pi(\xi \mid \xi)\right]$ for $\xi \in\{1,2\}$.

- Agent 2 has (possibly) incorrect beliefs regarding the persistency of expansion and/or recessions.

Our Model at Work: CESC-Heterogeneous I

- Agent 1 has correct beliefs.
- Agent 2 has beliefs

$$
\pi_{2}=\pi^{*}+\left[\begin{array}{cccc}
-\varepsilon_{1} & \varepsilon_{1} & 0 & 0 \\
\varepsilon_{2} & -\varepsilon_{2} & 0 & 0 \\
0 & 0 & -\varepsilon_{1} & \varepsilon_{1} \\
0 & 0 & \varepsilon_{2} & -\varepsilon_{2}
\end{array}\right]
$$

where $\varepsilon_{\xi} \in\left[\pi\left(\xi^{\prime} \mid \xi\right), \pi(\xi \mid \xi)\right]$ for $\xi \in\{1,2\}$.

- Agent 2 has (possibly) incorrect beliefs regarding the persistency of expansion and/or recessions.
- Agent 2 has correct beliefs regarding the idiosyncratic state.

Our Model at Work: CESC-Heterogeneous I

- Agent 1 has correct beliefs.
- Agent 2 has beliefs

$$
\pi_{2}=\pi^{*}+\left[\begin{array}{cccc}
-\varepsilon_{1} & \varepsilon_{1} & 0 & 0 \\
\varepsilon_{2} & -\varepsilon_{2} & 0 & 0 \\
0 & 0 & -\varepsilon_{1} & \varepsilon_{1} \\
0 & 0 & \varepsilon_{2} & -\varepsilon_{2}
\end{array}\right]
$$

where $\varepsilon_{\xi} \in\left[\pi\left(\xi^{\prime} \mid \xi\right), \pi(\xi \mid \xi)\right]$ for $\xi \in\{1,2\}$.

- Agent 2 has (possibly) incorrect beliefs regarding the persistency of expansion and/or recessions.
- Agent 2 has correct beliefs regarding the idiosyncratic state.
- Agent 2 has correct beliefs about being rich or poor the next period.

Our Model at Work: CESC-Heterogeneous I

- Agent 1 has correct beliefs.
- Agent 2 has beliefs

$$
\pi_{2}=\pi^{*}+\left[\begin{array}{cccc}
-\varepsilon_{1} & \varepsilon_{1} & 0 & 0 \\
\varepsilon_{2} & -\varepsilon_{2} & 0 & 0 \\
0 & 0 & -\varepsilon_{1} & \varepsilon_{1} \\
0 & 0 & \varepsilon_{2} & -\varepsilon_{2}
\end{array}\right]
$$

where $\varepsilon_{\xi} \in\left[\pi\left(\xi^{\prime} \mid \xi\right), \pi(\xi \mid \xi)\right]$ for $\xi \in\{1,2\}$.

- Agent 2 has (possibly) incorrect beliefs regarding the persistency of expansion and/or recessions.
- Agent 2 has correct beliefs regarding the idiosyncratic state.
- Agent 2 has correct beliefs about being rich or poor the next period.
- Agent 2 has correct beliefs about the correlation of the growth rate if $\varepsilon_{1}+\varepsilon_{2}=0$

CPO Allocations

- In this example, agent 2 (correctly) beliefs the growth rate is uncorrelated:

CPO Allocations

- In this example, agent 2 (correctly) beliefs the growth rate is uncorrelated:

- Equity Premium is 4.19%.

CPO Allocations

- In this example, agent 2 (correctly) beliefs the growth rate is uncorrelated:

- Equity Premium is 4.19%.
- The Risk-Free rate is way too high.

Conclusions

- We show that short-term momentum and long-term reversal are consistent with the qualitative predictions of CESC with belief heterogeneity when the model is calibrated to US post-war quarterly data.

Conclusions

- We show that short-term momentum and long-term reversal are consistent with the qualitative predictions of CESC with belief heterogeneity when the model is calibrated to US post-war quarterly data.
- The (endogenous) dynamics of the wealth distribution induces asset returns "as if" in booms the market becomes (on average) pessimistic about the short-term and optimistic about the long-term.

Conclusions

- We show that short-term momentum and long-term reversal are consistent with the qualitative predictions of CESC with belief heterogeneity when the model is calibrated to US post-war quarterly data.
- The (endogenous) dynamics of the wealth distribution induces asset returns "as if" in booms the market becomes (on average) pessimistic about the short-term and optimistic about the long-term.
- We did not assume agents have psicological biases.

