# Stock liquidity in forefront of anticipated announcements

### Sergey Gelman

International College of Economics and Finance, Higher School of Economics, Moscow

### Roman Lushchikov

OJSC Sberbank of Russia, Moscow

LFE Workshop in Financial Economics 2014, Moscow

LEEW 2014

1 / 25

- information asymmetry has a deteriorating impact on liquidity (Kyle 1985)
- outstanding earnings announcements lead to increased fundamental uncertainty and thus information asymmetry
- Deteriorating effect of EAs has been shown for spreads and volumes at best bid and ask quotes (Lee et al. 1993,...)
- $\bullet$  However the main theoretical prediction is not about tightness, but depth Kyle's  $\lambda$
- This paper: focuses on the slopes of the supply and demand schedules

- Calculate both spreads and supply and demand elasticities
- sample of 42 NYSE traded stocks in 2011

Contribution

- We find supportive evidence of the deteriorating effect of outstanding EAs
- The effect is stronger for the market depth measures compared to tightness measures

### Introduction

- 2 Literature review
- Oata and Methodology
- Empirical results
- Sonclusion

One period case

$$p_{1}=p_{0}+\lambda\left( u+y\right)$$

thereby  $\lambda$ 

$$\lambda = \frac{\sigma_f}{2\sigma_u},$$

where  $\sigma_f$  is fundamental uncertainty (volatility of the fundamental value given  $p_0$ )

# Fundamental uncertainty prior to EA day



LFEW 2014 6 / 25

- Spreads increase prior to EA, order volumes at best quotes decrease (Lee et al. 1993)
- Liquidity deteriorates proportionally to ex-post surprise (Lee et al. 1993)
- Liquidity (price-impact of a trade) enhances after EA (Furfane 2014)

## Data

- Order book data from NYSE TAQ Openbook History (42 stocks)
- Earnings announcement dates: Bloomberg, partially handcollected.

| ABT | HUM | PEP |
|-----|-----|-----|
| AET | JCP | PG  |
| ANF | JNJ | PPL |
| APA | JPM | PX  |
| APC | JWN | RTN |
| ATI | KEY | SHW |
| AVY | NOC | SO  |
| BAX | NSC | STJ |
| BBY | ODP | STT |
| BCR | OI  | SYY |
| BHI | OKE | TER |
| BLL | OMC | TSN |
| BMS | PBI | TSS |
| HSY | PCG | тхт |

- Accumulate orders at the end of each minute (drop observations before 9:35 and after 15:55) to obtain 381 order book snapshots per day for each stock
- ② Calculate liquidity measures for each snapshot
- Take daily averages of liquidity measures for each stock and day
- 9 Run SUR with controls on dummies for pre-announcement days

## Example: order book snapshot, non pre-EAD

Figure: Abbott Labs, Feb 14, 2011, 12:30:00



## Example: order book snapshot, pre-EAD

Figure: Abbott Labs, April 19, 2011, 12:30:00



# Liquidity measures for each snapshot

• Supply curve elasticity (following Naes and Skjeltrop (2006)):

$$SE_{it}^{s} = rac{1}{N}\sum_{\pi=1}^{N}rac{\left(V_{\pi+1}^{A}-V_{\pi}^{A}
ight)/V_{\pi}^{A}}{\left(P_{\pi+1}^{A}-P_{\pi}^{A}
ight)/P_{\pi}^{A}}$$

Demand curve elasticity

$$DE_{it}^{s} = rac{1}{N}\sum_{\pi=1}^{N}rac{\left(V_{\pi+1}^{B}-V_{\pi}^{B}
ight) / V_{\pi}^{B}}{\left(P_{\pi+1}^{B}-P_{\pi}^{B}
ight) / P_{\pi}^{B}}$$

Average book elasticity

$$AE_{it}^s = \frac{SE_{it}^s + |DE_{it}^s|}{2}$$

- we use N = 10 and  $N = \max[\pi] 1$ ; Ask 10 Elasticity, Bid 10 Elasticity, Av. 10 Elasticity, Ask Total Elasticity, Bid Total Elasticity, Av. Total Elasticity
- Quoted spread

$$QS_{it}^{s} = rac{P_{1}^{A} - P_{1}^{B}}{0.5 \cdot \left(P_{1}^{A} + P_{1}^{B}
ight)}$$
 ,

# Intraday dynamics of a liquidity measure

Figure: Abbott Labs, February 14, 2011



LFEW 2014 13 / 25

# Daily liquidity measures

Averaging over 1-minute snapshots

• Supply curve elasticity

$$SE_{it} = rac{1}{381} \sum_{s=1}^{381} SE^s_{it}$$

• Demand curve elasticity

$$DE_{it} = rac{1}{381} \sum_{s=1}^{381} DE_{it}^s$$

Average elasticity

$$AE_{it} = rac{1}{381} \sum_{s=1}^{381} AE^s_{it}$$

Quoted Spread

$$QS_{it} = rac{1}{381} \sum_{s=1}^{381} QS_{it}^s$$

Figure: Abbott Laboratories, 2011

Av. 10 elasticity



Sergey Gelman, Roman Lushchikov (HSE) Liquidity in forefront of announcements Figure: Abbott Laboratories, 2011

**Quoted Spread** 



|              | Quoted spread | Av. Total<br>elasticity | Av. 10<br>elasticity | Bid total<br>elasticity | Ask total<br>elasticity | Bid 10<br>elasticity | Ask 10<br>elasticity |
|--------------|---------------|-------------------------|----------------------|-------------------------|-------------------------|----------------------|----------------------|
| Mean         | 5.83          | 487.04                  | 3253.75              | -406.75                 | 567.00                  | -2993.38             | 3489.21              |
| Median       | 4.64          | 487.19                  | 3324.39              | -416.08                 | 547.37                  | -3086.57             | 3517.14              |
| Maximum      | 57.64         | 1769.26                 | 22740.60             | -15.42                  | 3004.56                 | -51.06               | 39600.39             |
| Minimum      | 0.37          | 15.16                   | 50.56                | -1289.42                | 14.89                   | -9583.70             | 50.06                |
| Std. Dev.    | 5.14          | 242.55                  | 1515.99              | 212.86                  | 297.48                  | 1272.16              | 1803.60              |
| Observations | 10366         | 10405                   | 10419                | 10423                   | 10403                   | 10414                | 10403                |

Image: A math a math

|               | Quoted | Av. Total  | Av. 10     | Bid total  | Ask total  | Bid 10     | Ask 10     |
|---------------|--------|------------|------------|------------|------------|------------|------------|
|               | spread | elasticity | elasticity | elasticity | elasticity | elasticity | elasticity |
| Quoted spread | 1.00   | -0.18      | -0.43      | 0.12       | -0.21      | 0.45       | -0.39      |
| Av. Total     | -0.18  | 1.00       | 0.55       | -0.93      | 0.97       | -0.53      | 0.52       |
| elasticity    |        |            |            |            |            |            |            |
| Av. 10        | -0.43  | 0.55       | 1.00       | -0.37      | 0.62       | -0.95      | 0.97       |
| elasticity    |        |            |            |            |            |            |            |
| Bid total     | 0.12   | -0.93      | -0.37      | 1.00       | -0.80      | 0.42       | -0.32      |
| elasticity    |        |            |            |            |            |            |            |
| Ask total     | -0.21  | 0.97       | 0.62       | -0.80      | 1.00       | -0.57      | 0.62       |
| elasticity    |        |            |            |            |            |            |            |
| Bid 10        | 0.45   | -0.53      | -0.95      | 0.42       | -0.57      | 1.00       | -0.85      |
| elasticity    |        |            |            |            |            |            |            |
| Ask 10        | -0.39  | 0.52       | 0.97       | -0.32      | 0.62       | -0.85      | 1.00       |
| elasticity    |        |            |            |            |            |            |            |

イロト イ団ト イヨト イヨト

# Estimation equation

• Use SUR to estimate:

$$LM_{1,t} = \alpha_1 + \gamma_1 Aug_t + \delta_1 PED_{1,t} + \beta_{1,1} LM_{1,t-1} + \beta_{2,1} LM_{1,t-2} + \varepsilon_{1,t}$$

 $LM_{42,t} = \alpha_{42} + \gamma_{42}Aug_t + \delta_{42}PED_{42t} + \beta_{1,42}LM_{42,t-1} + \beta_{2,42}LM_{42,t-2} + \varepsilon_{42}Aug_t + \delta_{42}PED_{42t} + \delta_{42}PED$ 

#### where

- LM<sub>i,t</sub> is a liquidity measure {Ask 10 Elasticity, Bid 10 Elasticity, Av. 10 Elasticity, Ask Total Elasticity, Bid Total Elasticity, Av. Total Elasticity, Quoted Spread};
- Aug<sub>t</sub> is a liquidity dummy taking value 1 starting August 1, 2011;
- variable of interest is a dummy for pre-announcement days, *PED<sub>i,t</sub>*.

Test

$$\sum_{i=1}^{42} \delta_i = 0$$

|                | Quoted  | Av. Total  | Av. 10     | Bid total  | Ask        | Bid 10     | Ask 10     |
|----------------|---------|------------|------------|------------|------------|------------|------------|
|                | spread  | elasticity | elasticity | elasticity | total      | elasticity | elasticity |
|                |         |            |            |            | elasticity |            |            |
| EA-effect      | 0.22    | -29.2      | -435.9     | 30.2       | -37.2      | 430.0      | -462.1     |
| $\chi^2$ -stat | 14.0*** | 39.5***    | 79.0***    | 79.3***    | 22.2***    | 337.0***   | 48.2***    |

First line reports an average effect of a pre-announcement day on a liquidity measure, obtained from a SUR system of equations of type eq. 6, . Liquidity measures are defined in Eq. 4-5. Second line reports Wald test-statistic for the null-hypothesis , it is  $\chi^2$ -distributed with one degree of freedom.

- pre-announcement day spreads rise by 4% of their standard deviation
- whereas Av. Total Elasticity drops by 12% of standard deviation
- Av. 10 Elasticity worsens by 28% of its standard deviation

 $\Longrightarrow$  Economic effect of EA-induced uncertainty is far stronger for the slopes than for the spread at BBO

• demand elasticity deteriorates substantially stronger than the supply elasticity: 1/3 vs. 1/4 standard deviation

- Convincing supportive evidence of deteriorating liquidity due to the fundamental uncertainty
- Market depth is much stronger adversely affected, as best bid and ask quotes would suggest
- Demand elasticity suffers more in relative terms from unresolved firm-specific uncertainty

#### **Further steps**

• Analyze the impact of ex-ante magnitude of EA uncertainty (option-implied; analyst dispersion) on demand and suppply curve elasticity

**LEEW 2014** 

22 / 25

Expand the sample

## Thank you for your attention

# Example: dynamics of ASK10 Elasticity

Sysco Corp. Ask10 Elasticity





▶ ◀ Ē ▶ Ē ∽ ९ ( LFEW 2014 25 / 25