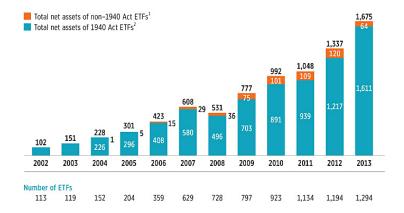
Expansion of ETFs and Alpha Discovery in the Mutual Fund Industry

Oleg Shibanov

New Economic School

November, 2014


- Exchange traded funds (ETFs) are more and more common
- How this impacts alpha for the rest of mutual funds?
- ► Cons: more competition reduces ability to generate alpha
- Pros: smaller funds are better at investing
- So the impact on alpha is indeterminate

Results

- Significant *increase* in alpha for smaller funds after ETF expansion (approximately 6bp annual increase in alpha for every \$100 bln. ETF expansion)
- ▶ This effect is stronger for the funds that have low *R*² in Fama-French-Carhart time series regression
- No significant effect for larger funds
- The effect still survives if we consider flows into "most correlated" ETF
- Fund fees go down with ETF expansion (almost trivial) more than the time trend predicts though
- ▶ Fund flows go down (almost trivial) more than competition predicts
- Volatility of funds' returns and alphas increase

Oleg Shibanov (NES)

ETF growth (ICI Fact Book)

Top-10 ETF funds as of September 2013

Symbol	Name	AUM	Avg Volume
SPY	SPDR S&P 500	\$142,986.8 M	109,482,570
VWO	Emerging Markets ETF	\$50,893.6 M	19,411,109
EFA	iShares MSCI EAFE ETF	\$45,493.3 M	15,279,061
IVV	Core S&P 500 ETF	\$44,279.7 M	4,312,735
EEM	iShares MSCI Emerging Markets	\$42,342.7 M	64,859,508
	ETF		
GLD	SPDR Gold Trust	\$37,638.1 M	9,217,997
QQQ	QQQ	\$37,315.6 M	26,544,412
VTI	Total Stock Market ETF	\$33,620.9 M	2,284,088
IWM	iShares Russell 2000 ETF	\$25,496.2 M	32,884,488
IWF	iShares Russell 1000 Growth	\$19,788.6 M	1,791,653
	ETF		

Source: ETF database

Literature

- Mutual fund return predictability: Lou (2012 RFS), Lou and Polk (2013)
- ETFs and stock correlations: Wurgler and Zhuravskaya (2002 JoB), Greenwood (2008 RFS), Hamm (2011), Da and Shive (2013)
- ▶ Pricing of ETFs: Engle and Sarkar (2002), Petajisto (2011)
- ► Theoretical equilibrium models: Berk and Green (2004 JPE)
- Mutual fund performance and reduction in alpha with size: Pastor, Stambaugh and Taylor (2014)

Data

- Monthly returns and fund characteristics are from Center for Research in Security Prices (CRSP) Survivor-Bias Free U.S. Mutual Fund Database
- ▶ Fama-French and momentum factors
- Time period is January 1981 December 2012 (384 months)
- ► ≈12700 diversified domestic U.S. mutual funds (more than \$10 mln. in 2012 dollars), ≈985000 fund-month observations
- Sample means:
 - Mean unadjusted before-fees return equals to 8.5% per year
 - risk-adjusted before-fees performance is 7bp
 - after-fees performance is -87 bp

- ▶ 764 ETFs starting from 1998 (only equity, only close-to-diversified)
- Especially fast expansion from 2004
- ▶ 611 of them are index funds
- Median size of \$122 mln.
- ▶ Very skewed: large funds attract up to \$123 bln. (SPDR S&P 500)
- Next one is \$75 bln.

Hypothesis

- (Competition): ETFs attract investors who would otherwise invest with mutual funds (assumed, not tested)
- Size curse reversed: Lower fund inflows lead to higher alpha
 - This only impacts smaller funds
- The result "weakly survives" when I consider "the closest" (most correlated) ETF

- ETF expansion leads to higher volatility of returns of other funds
- Costs and fund flows decrease (almost trivial)

Methodology

▶ F-F-C alpha: regress gross returns (corrected for fees)

$$r_{jt} - rf_t = \alpha_j + \beta_{Mkt,j}Mkt_t + \beta_{SMB,j}SMB_t + \beta_{HML,j}HML_t + \beta_{Mom,j}Mom_t + \epsilon_{it}$$

Risk-adjusted return (alpha):

$$\alpha_{jt} = r_{jt} - rf_t - \beta_{Mkt,j,t-1}Mkt_t - \beta_{SMB,j,t-1}SMB_t - \beta_{HML,j,t-1}HML_t - \beta_{Mom,j,t-1}Mom_t$$

Oleg Shibanov (NES)

Form portfolios

- In order to create more variability in betas fo Fama-McBeth test I sort funds into 25 size-weighted portfolios
- ... based on size, past returns or both
- There are 132 funds in a portfolio, on average
- First stage: estimate

 $r_{it} - rf_t = const + \beta_{Mkt}Mkt_t + \beta_{SMB}SMB_t + \beta_{HML}HML_t +$

 $+\beta_{Mom}Mom_t + \beta_{ETF} \ln(size_t(ETF) + 1) + \epsilon_t$

I try to see if there is any relation between *total* ETF size and alpha
Second stage: cross-section of portfolios' returns

$$\overline{R_{it} - Rf_t} = \lambda_{Mkt}\beta_{Mkt,j} + \lambda_{SMB}\beta_{SMB,j} + \lambda_{HML}\beta_{HML,j} + \lambda_{Mom}\beta_{Mom,j} + \lambda_{ETF}\beta_{ETF,j} + \eta_j$$

Oleg Shibanov (NES)

ETF and alpha discovery

Results

Cross-sectional fit

	САРМ	Fama-French	F-F-C	Model 3
λ_{Mkt}	0,99%***	0,84%***	0,90%***	0,90%***
	(0,28%)	(0,27%)	(0,26%)	(0,26%)
λ_{SMB}		0,43%*	0,23%	0,22%
		(0,26%)	(0,29%)	(0,30%)
λ_{HML}		$-1,51\%^{**}$	-0,88%**	-0,89%**
		(0,59%)	(0,45%)	(0,45%)
λ_{UMD}			0,79%*	0,79%*
			(0,47%)	(0,48%)
λ_{ETF}				0,034%
				(0,024%)
J _{FM}	51,02	71,54	42,38	41,52
P – value	0,0016	0,0001	0,0164	0.0178

Results for smaller portfolios

Cross-sectional fit

	CAPM	Fama-French	F-F-C	Model 3
λ_{Mkt}	0,99%***	0,84%***	0,90%***	0,90%***
	(0,28%)	(0,27%)	(0,26%)	(0,26%)
λ_{SMB}		0,43%*	0,23%	0,22%
		(0,26%)	(0,29%)	(0,30%)
λ_{HML}		$-1,51\%^{**}$	-0,88%**	-0,89%**
		(0,59%)	(0,45%)	(0,45%)
λυmd			0,79%*	0,79%*
			(0,47%)	(0,48%)
$\lambda_{Large,ETF}$				0,021%
				(0,023%)
$\lambda_{Small,ETF}$				0,047%*
Í				(0,032%)
J _{FM}	51,02	71,54	42,38	40,52
P – value	0,0016	0,0001	0,0164	0.0181

Most correlated ETF

- This is a weaker approach
- I find the closest ETF to every mutual fund in the sample (based on past 2 years of monthly returns)
- Compute correlation between change in (annual) alpha and this ETF (precentage) inflows

Results

Average correlation of ETF inflows and alpha change

	Correlation	Std. dev.
Size 1 (largest)	-0,03	0.04
Size 2	0.00	0.07
Size 3	0.02	0.05
Size 4	0.03*	0.02
Size 5 (lowest)	0.05*	0.03

What's going on here?

- ▶ Significant *increase* in alpha for smaller funds after ETF expansion
- ▶ Even more significant for the funds that have low *R*² in Fama-French-Carhart time series regression
- No effect for larger funds
- Fund fees go down with ETF expansion
- Fund flows go down
- Volatility of funds' returns and alphas increase

Conclusion

- ► Significant *increase* in alpha for smaller funds after ETF expansion
- ▶ Even more significant for the funds that have low *R*² in Fama-French-Carhart time series regression
- ► No effect for larger funds
- Fund fees go down with ETF expansion
- Fund flows go down
- Volatility of funds' returns and alphas increase