
Market Microstructure Invariance:
Theory and Empirical Tests∗

Albert S. Kyle
University of Maryland
akyle@rhsmith.umd.edu

Anna A. Obizhaeva
New Economic School
aobizhaeva@nes.ru

October 17, 2014†

Abstract

Using the intuition that financial markets transfer risks in business time,
we define “market microstructure invariance” as the hypothesis that the dis-
tribution of risk transfers (“bets”), transactions costs, market resiliency, and
pricing accuracy are constant across assets when measured per unit of business
time. A structural model of risk-neutral informed trading and noise trading
with linear price impact shows that invariance relationships arise when the
costs of informative signals are constant. The invariance hypotheses imply that
microstructure variables like bet size and transactions costs have empirically
testable relationships to observable dollar volume and volatility. Since portfo-
lio transitions can be viewed as natural experiments for measuring transactions
costs and individual orders can be treated as proxies for bets, we test these
empirical predictions using a dataset of 400,000+ portfolio transition orders
and find that the predictions closely match the data.
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This paper proposes a modeling principle for financial markets that we call “mar-
ket microstructure invariance.” When portfolio managers trade financial assets, they
can be modeled as playing trading games in which risks are transferred. Market mi-
crostructure invariance begins with the intuition that these risk transfers, which we
call “bets,” take place in business time. The rate at which business time passes—
market “velocity”—is the rate at which new bets arrive into the market. For actively
traded assets, business time passes quickly; for inactively traded assets, business
time passes slowly. Market microstructure invariance hypothesizes that microstruc-
ture characteristics, which vary when measured in units of calendar time, become
constants—“microstructure invariants”—when measured in units of business time.

In section 1, we formulate the three invariance principles as empirical hypotheses,
conjectured to apply for all securities and across time:

• The distribution of the dollar risk transferred by a bet is the same when the
dollar risk it transfers is measured in units of business time.

• The dollar expected transactions cost of executing a bet is the same function
of the size of the bet when its size is measured as the dollar risk it transfers in
units of business time.

• Pricing accuracy is the same if its reciprocal is scaled by returns volatility per
unit of business time, and market resiliency is the same if it is measured in units
of business time.

When measured in calendar time, invariance implies that the size distribution
of risk transfers, the number of bets, illiquidity, bid-ask spreads, market impact,
pricing accuracy, and resiliency become proportional to powers of market velocity.
Market velocity itself is proportional to the two-thirds power of calendar-time “trading
activity,” which we define as the product of empirically observable dollar volume
and returns volatility. This gives specific testable empirical content to the invariance
hypotheses. For example, the size distribution of bets, as a fraction of trading volume,
is inversely proportional to the two-thirds power of trading activity. The transactions
cost function is the product of an invariant cost function of bet size and an asset-
specific measure of illiquidity, which is proportional to the cube root of the ratio of
returns variance to dollar volume. Other market microstructure characteristics are
also proportional to powers of observable dollar volume and returns volatility.

In section 2, we develop a structural model showing that all three microstructure
invariance hypotheses are consistent with a dynamic infinite-horizon model of market
microstructure with risk-neutral informed trading, noise trading, market making, and
endogenous production of information. The invariance relationships are derived under
the assumption that the effort required to generate one discrete bet does not vary
across stocks and time. Since bets are based on the arrival of discrete chunks of
information, the structural model describes how the invariance relationships reflect
differences in the granularity of information flows across markets. The invariance
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of pricing accuracy and market resiliency requires the additional assumption that
private information has the same signal-to-noise ratio across markets.

In section 3, we show how invariance can be used to derive testable implications
from theoretical models of market microstructure. Invariance provides guidance on
how to construct good empirical proxies for some difficult-to-observe microstructure
concepts such as “order imbalances.” It imposes a discipline on empirical tests by
showing how to specify regressions and scale explanatory variables so that estimated
regression coefficients can be assumed to be constant across observations.

In section 4, we describe the portfolio transitions data used to test invariance re-
lationships concerning bet size and transactions costs. The dataset consists of more
than 400,000 portfolio transition orders executed over the period 2001 through 2005
by a leading vendor of portfolio transition services. Portfolio transitions are used by
institutional sponsors to transfer funds from legacy portfolio managers to new man-
agers in order to replace fund managers, change asset allocations, or accommodate
cash inflows and outflows. Portfolio transitions provide a good natural experiment
for identifying bets and measuring transactions costs.

In section 5, we examine whether bet sizes are consistent with the invariance
hypothesis under the identifying assumption that portfolio transition orders are pro-
portional to bets. As implied by invariance, the size distribution of the product of the
ratio of order size as a fraction of average daily volume and the two-thirds power of
trading activity indeed resembles an invariant distribution. Regression analysis also
confirms this finding.

The portfolio transition orders have a log-normal distribution with estimated log-
variance of 2.53 (figure 2). The log-normal empirical distribution of order size (a
bi-modal “signed” log-normal distribution for buy and sell orders) has much more
kurtosis than the normal distribution often assumed for analytical convenience in the
theoretical literature. The fat tails of the estimated log-normal distribution suggest
that very large bets represent a large fraction of trading volume and generate an even
larger fraction of returns variance. Execution of large bets may trigger noticeable
market dislocations.

In section 6, we use implementation shortfall to examine whether transactions
costs are consistent with the invariance hypothesis. Even though statistical tests usu-
ally reject invariance hypotheses, the results are economically close to those implied
by invariance. Consistent with invariance, transactions cost functions can be closely
approximated by the product of an asset-specific illiquidity measure (proportional to
the cube root of the ratio of returns variance to dollar volume) and an invariant func-
tion of bet size (figure 5). Invariance itself does not impose a particular form on the
transactions cost function. Empirically, both a linear model and a square root model
explain transactions costs well. A square root model explains transactions costs for
orders in the 90th to 99th percentiles better than a linear model; a linear model ex-
plains transaction costs for the largest 1% of orders slightly better than the square
root model. Quoted spreads are also consistent with the predictions of invariance.
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In section 7, we present estimates of the distribution of bet size, the number of
bets, and linear and square root transactions cost functions based on calibration of a
handful of parameters.

The potential benefits of invariance principles for empirical market microstructure
are enormous. In the area of transactions cost measurement, for example, controlled
experiments are costly and natural experiments are rare; even well-specified tests of
transactions cost models tend to have low statistical power. Market microstructure
invariance defines parsimonious structural relationships leading to precise predictions
about how various microstructure characteristics, including transactions costs, vary
across stocks with different dollar volume and volatility. These predictions can be
tested with structural estimates of a handful of parameters using limited data from
many different stocks.

The idea of using invariance principles in finance and economics, at least implicitly,
is not new. The theory of Modigliani and Miller (1958) is an example of an invariance
principle. The idea of measuring trading in financial markets in business time or
transaction time is not new either. The “time-change” literature has a long history,
beginning with Mandelbrot and Taylor (1967), who link business time to transactions,
and Clark (1973), who links business time to volume. Allais (1956) and Allais (1966)
are other early examples of models with time deformation. More recent papers include
Hasbrouck (1999), Ané and Geman (2000), Dufour and Engle (2000), Plerou et al.
(2000), and Derman (2002). Invariance is not based on the idea that returns volatility
is constant in transaction time, like some of these papers; instead, invariance is based
on the different idea that the dollar risk transferred by the average bet is the same in
bet time.

Given values of a tiny number of proportionality constants, the invariance relation-
ships allow microscopic features of the market for a financial asset to be inferred from
macroscopic market characteristics such as dollar volume and returns volatility. The
units in which these proportionality factors are measured are consistent with their
intended economic content. Making empirical predictions on the basis of invariance
principles is well established in physics. Our analysis is similar in spirit to inferring
the size and number of molecules in a mole of gas from measurable large-scale physical
quantities. It is also similar to methods physicists use to model turbulence.

In both physics and market microstructure, application of invariance principles
requires that certain assumptions be met. For example, the laws of physics hold in
simplest form for objects traveling in a vacuum but have to be modified when re-
sistance from air generates friction. Similarly, in market microstructure, invariance
relationships may hold only under idealized conditions. For example, the predic-
tions of invariance may hold most closely when tick size is small, market makers are
competitive, and transactions fees and taxes are minimal. Invariance principles pro-
vide a benchmark from which the importance of frictions such as a large tick size,
non-competitive market access, or high fees and taxes can be measured.
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1 Market Microstructure Invariance

as an Empirical Hypothesis

Market microstructure characteristics such as order size, order arrival rate, price im-
pact, bid-ask spread, pricing accuracy, and market resiliency vary across assets and
across time. We define “market microstructure invariance” as the empirical hypoth-
esis that this variation almost disappears when these characteristics are examined at
an asset-specific “business-time” scale which measures the rate at which risk transfer
takes place.

Although the discussion below is based on cross-sectional implications of invari-
ance for equity markets for individual stocks, we believe that invariance principles
generalize to markets for commodities, bonds, currencies, and aggregate indices such
as exchange-traded funds and stock index futures contracts. For simplicity, we as-
sume that a bet transfers only idiosyncratic risk about a single security, not market
risk; modeling both idiosyncratic and market risks simultaneously takes us beyond
the scope of this paper.

Notation. In the market for an individual stock, institutional asset managers buy
and sell shares to implement “bets.” We think of a bet as a decision to acquire a long-
term position of a specific size in a stock, distributed approximately independently
from other such decisions. Intermediaries with short-term trading strategies—market
makers, high frequency traders, and other arbitragers—clear markets by taking the
other side of bets placed by long-term traders.

Over short periods of time, we assume that the bet arrival rate can be approxi-
mated by a compound Poisson process. Let γ denote the expected bet arrival rate of
independently distributed bets, measured in bets per calendar day. Let Q̃ denote a
random variable whose probability distribution represents the signed size of bets; Q̃
is measured in shares (positive for buys, negative for sells) with E{Q̃} = 0. The bet
arrival rate γ measures market velocity, the rate at which business time passes for a
particular stock.1

Bets can be difficult for researchers to observe. Consider an asset manager who
places one bet by purchasing 100,000 shares of IBM stock. The bet might be imple-
mented by placing orders over several days, and each of the orders might be “shred-
ded” into many small trades. Since bets represent independent increments in the
intended order flow, the various trades which implement the bet must all be added
together to recover the size of the original bet. Thus, individual bets are impossible to
reconstruct from publicly disseminated records of time-stamped prices and quantities
such as those contained in the Trade and Quote (TAQ) database.

1Over long periods of time, we assume that the inventories of intermediaries do not grow in an
unbounded manner; this requires bets to have small negative autocorrelation. Furthermore, both
the bet arrival rate and the distribution of bet size change over longer periods of time as the level
of trading activity in a stock increases or decreases.
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Similarly, if an analyst issues a buy recommendation to ten different customers
and each of the customers quickly places executable orders to buy 10,000 shares, it
might be appropriate to think of the ten orders as one bet for 100,000 shares. The
bet results from a new idea, which can be shared. The ten individual orders lack
statistical independence.

We assume that, on average, each unit of betting volume results in ζ units of
total volume, i.e., one unit of betting volume leads to ζ − 1 units of intermediation
volume. On a given calendar day, expected trading volume (in shares) is given by
V := ζ/2 · γ · E|Q̃|; dividing by two implies that a buy-bet matched to a sell-bet is
counted as one unit of volume, not two. We define expected “betting volume” V̄ by

V̄ := γ · E{|Q̃|} =
2

ζ
· V. (1)

We can estimate expected betting volume V̄ by combining an estimate of expected
market volume V with a value for the “volume multiplier” ζ. If all trades are bets and
there are no intermediaries, then ζ = 1, since each unit of trading volume matches
a buy-bet with a sell-bet. If a monopolistic specialist intermediates all bets without
involvement of other intermediaries, then ζ = 2. If each bet is intermediated by
different market makers, each of whom lays off inventory by trading with other market
makers, then ζ = 3. If positions are passed around among multiple intermediaries,
then ζ ≥ 4.

Define “returns volatility” σ as the percentage standard deviation of a stock’s
daily returns. Some price fluctuations result from release of information directly
without trading, such as overnight news announcements. Let ψ2 denote the fraction
of returns variance σ2 resulting from order flow imbalances, which are ultimately
related to the arrival bets. We define “betting volatility” as the standard deviation
of returns resulting from bet-related order flow imbalances:

σ̄ := ψ · σ. (2)

We can estimate betting volatility σ̄ by combining an estimate of returns volatility
σ with a value for the “volatility multiplier” ψ. Let P denote the price of the stock;
then dollar “betting volatility” is P · σ̄ = ψ · P · σ.

For simplicity, we assume that ζ and ψ are constant across stocks and time.

Invariance of Bets. Market microstructure invariance hypothesizes that the dis-
tribution of the dollar risk transferred by a bet is the same when the dollar risk it
transfers is measured in units of business time.

A bet of dollar size P · Q̃ generates a standard deviation of dollar mark-to-market
gains or losses equal to P · |Q̃| · σ̄ · γ−1/2 in one unit of business time 1/γ. The signed
standard deviation P · Q̃ · σ̄ ·γ−1/2 measures both the direction and the size of the risk
transfer resulting from the bet. Instead of measuring the size of a bet as a number of
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shares Q̃, the size of the bet can alternatively be measured as the amount of risk it
transfers per unit of business time, which we denote as Ĩ. Therefore, Ĩ is defined by

Ĩ := P · Q̃ · σ̄ · γ−1/2. (3)

Invariance of bets is the hypothesis that the distribution of the random variable Ĩ is
the same across stocks and time. In this sense, the distribution of risk transfer Ĩ is a
market microstructure invariant.

By analogy with bets, we define “trading activity” W as the product of expected
dollar trading volume P · V and calendar returns volatility σ, i.e., W := σ · P · V .
Trading activity measures the aggregate dollar risk transferred by all bets during
one calendar day. Similarly, define “betting activity” W̄ as the product of dollar
betting volume P · V̄ and betting volatility σ̄, i.e., W̄ := σ̄ · P · V̄ .2 Given values of
the volume multiplier ζ and the volatility multiplier ψ, we can convert more-easily-
observed trading activity W into less-easily-observed betting activity W̄ using the
relationship W̄ = W · 2ψ/ζ.

Equations (1) and (3) imply that betting activity W̄ can be expressed as a function
of the unobservable speed of business time γ as:

W̄ = σ̄ · P · V̄ = σ̄ · P · γ · E{|Q̃|} = γ3/2 · E{|Ĩ|}. (4)

Invariance of bets therefore makes it possible to infer the bet arrival rate γ and the
average bet size E{|Q̃|} from the level of betting activity W̄ , up to some proportion-
ality constant E{|Ĩ|} which does not vary across stocks. Define ι := (E{|Ĩ|})−1/3;
since Ĩ has an invariant probability distribution, ι is a constant. Solving equation (4)
for γ in terms of W̄ and E{|Q̃|} yields

γ = W̄ 2/3 · ι2, E{|Q̃|} = W̄ 1/3 · 1

P · σ̄
· ι−2. (5)

The shape of the entire distribution of bet size Q̃ can be obtained by plugging γ from
equation (5) into equation (3). Expressing bet size Q̃ as a fraction of expected betting
volume V̄ , we obtain

Q̃

V̄
= W̄−2/3 · Ĩ · ι. (6)

Equations (5) and (6) summarize the implications of invariance for bet size and arrival
rate. We test these implications in section 5.

The specific exponents 2/3 and 1/3 in equation (5) have simple intuition. Suppose
business time γ speeds up by a factor of 4, but volatility in calendar time σ̄ does not
change. Then volatility per unit of business time σ̄ · γ−1/2 decreases by a factor of 2.

2In principle, we could distinguish between P̄ and P based on adjustments for transactions fees,
fee rebates, taxes, and tick size effects. To keep matters simple, we ignore these issues and effectively
assume P̄ = P .
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The invariance principle (3) therefore requires bet size Q̃ to increase by a factor of 2
to keep the distribution of Ĩ invariant. The resulting increase in betting volume by
a factor of 8 = 43/2 can be decomposed into an increase in the number of bets by a
factor of 82/3 = 4 and the size of bets by a factor of 81/3 = 2.

As betting activity increases, the number of bets increases twice as fast as their
size. This specific relationship between the number and size of bets lies at the very
heart of invariance. Our hypotheses about transactions costs, price impact, pric-
ing accuracy, and market resiliency are based on the order flow having this specific
composition.

Invariance of Transactions Costs. Market microstructure invariance also makes
empirical predictions about transactions costs. Market microstructure invariance hy-
pothesizes that the dollar expected transactions cost of executing a bet is the same
function of the size of the bet when its size is measured as the dollar risk it transfers
in units of business time.

Since the risk transferred per unit of business time by a bet of Q̃ shares is measured
by Ĩ = P ·Q̃·σ̄·γ−1/2, invariance of trading costs implies that there exists an “invariant
expected transactions cost function” CB(Ĩ) which measures in dollars the expected
execution cost of transferring the risk represented by Q̃ = Ĩ ·(σ̄Pγ−1/2)−1 shares. The
dollar transactions cost function CB(Ĩ) is a market microstructure invariant.

Consider the following numerical example. Suppose that a 99th percentile bet
in stock A is for $10 million (e.g., 100, 000 shares at $100 per share) while a 99th
percentile bet in stock B is for $1 million (e.g., 100, 000 shares at $10 per share).
Even though the dollar sizes of these bets are different, stock A may be more actively
traded than stock B, and therefore its returns volatility per unit of business time is
lower. Since both bets occupy the same percentile in the bet size distribution for their
respective stocks, the invariance of the distribution of bet size implies that the value
of Ĩ is the same in both cases. Furthermore, even though the bet in stock A has 10
times the dollar value of the bet in stock B, invariance of transactions costs implies
that the expected cost of executing each bet CB(Ĩ) is the same in dollars, because
both bets transfer the same amount of risk per stock-specific unit of business time.
Measured in basis points, however, invariance implies that the transactions cost for
Stock B is 10 times greater than for stock A.

Let C(Q̃) denote the stock-specific expected cost of executing a bet of Q̃ shares,
expressed as a fraction of the notional value of the bet |P ·Q̃|, i.e., in units of 10−4 basis
points. Define the unconditional expected cost C̄B := E{CB(Ĩ)}. From equation (3),
it follows that the formula for percentage costs is given by

C(Q̃) =
CB(Ĩ)

|P · Q̃|
=

C̄B

E{|P · Q̃|}
· CB(Ĩ)/C̄B

|Ĩ|/E{|Ĩ|}
. (7)

Let f(Ĩ) := [CB(Ĩ)/C̄B]/[|Ĩ|/E{|Ĩ|}] denote the invariant “average cost function”
for executing a bet Ĩ. This function is the ratio of CB(Ĩ) to |Ĩ| when both CB(Ĩ) and
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|Ĩ| are expressed as multiples of their means. For example, if I denotes a bet that is
5 times greater than than an average unsigned bet of size E{|Ĩ|} and such a bet has
a dollar transactions cost 10 times greater than the mean cost C̄B, then f(I) = 2.

Let 1/L := C̄B/E{|P · Q̃|} be an asset-specific measure of illiquidity equal to the
dollar-volume-weighted expected cost of executing a bet. For an asset manager who
places many bets in the same stock, this expresses expected transactions cost as a
fraction of the dollar value traded (10−4basis points). Equation (5) yields

1

L
:= ι2C̄B · σ̄W̄−1/3 = ι2C̄B ·

(
σ̄2

P · V̄

)1/3

. (8)

Recall that ι := (E{|Ĩ|})−1/3 and C̄B are constants in this equation.
Plugging the definitions of f(Ĩ) and 1/L into equation (7) makes it possible to

write the expected percentage cost function C(Q) as the product of the asset-specific
illiquidity measure 1/L and an invariant transactions cost function f(Ĩ):

C(Q̃) =
1

L
· f(Ĩ). (9)

This is an important decomposition of transaction cost functions.
When the bet size is measured as a fraction of betting volume Q̃/V̄ , the cost

function C(Q) can be expressed conveniently in terms of betting activity W̄ and
invariant constants ι and C̄B as

C(Q̃) = σ̄W̄−1/3 · ι2C̄B · f

(
W̄ 2/3

ι
· Q̃
V̄

)
. (10)

We test this specification empirically in section 6.
To implement L empirically, it is simpler to define L in terms of expected dollar

trading volume P · V and expected returns volatility σ rather than in terms of dollar
betting volume P · V̄ and betting volatility σ̄. Using equations (1) and (2), we have

1

L
= ( ζ

2
ψ2)1/3 · ι2C̄B ·

(
σ2

P · V

)1/3

. (11)

The idea that liquidity is related to dollar volume per unit of returns variance P · V/σ2

is intuitive. Traders believe that transactions costs are low in markets with high dollar
volume and high in markets with high volatility. If the volume multiplier ζ and the

volatility multiplier ψ do not vary across stocks, then L ∝ [P · V/σ2]
1/3

becomes a
simple index of liquidity.

The liquidity measure L = [ι2C̄B]
−1 · [P · V̄ /σ̄2]1/3 is an intuitive and practical

alternative to other measures of liquidity, such as Amihud (2002) and Stambough and
Pastor (2003). The value of L can easily be calibrated from price and volume data
provided by The Center for Research in Security Prices (CRSP).3

3The liquidity measure L is similar to the definition of “market temperature” χ = σ̄ · γ1/2 in
Derman (2002); substituting for γ from equation (5), we obtain χ = ι · [P · V̄ ]1/3 · [σ̄]4/3 ∝ L · σ2.
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Invariance does not imply a specific functional form for function f(.). In our
analysis, we focus on two specific functional forms: linear price impact costs and
square root price impact costs. For both functional forms, we also allow a constant
bid-ask spread cost component. The linear price impact function is consistent with
price impact models based on adverse selection, such as Kyle (1985). The square
root price impact function is consistent with empirical findings in the econophysics
literature, such as Gabaix et al. (2006), although these results are based on single
trades rather than bets; some papers in this literature, such as Almgren et al. (2005),
find an exponent closer to 0.60 than the square root exponent of 0.50.

For the linear model, we write f(Ĩ) as the sum of a bid-ask spread component and
a linear price impact cost component, f(Ĩ) := (ι2C̄B)

−1 · κ0 + (ιC̄B)
−1 · κI · |Ĩ|, where

invariance implies that the bid-ask spread cost parameter κ0, the market impact cost
parameter κI , and the constants ι and C̄B do not vary across stocks. Since the specific
coefficients ι2C̄B and ιC̄B are chosen to cancel out in a nice way, equation (9) implies
that the proportional cost function C(Q̃) has the simple form

C(Q̃) = σ̄

(
κ0 · W̄−1/3 + κI · W̄ 1/3 · |Q̃|

V̄

)
. (12)

When bet sizes are measured as a fraction of expected betting volume and transactions
costs are measured in basis points, bid-ask spread costs are decreasing in betting
activity W̄ and market impact costs are increasing in betting activity W̄ . When
transactions costs in basis points are further scaled in units of betting volatility σ̄,
equation (12) says that bid-ask spread costs are proportional W̄−1/3 and market
impact costs are proportional to W̄ 1/3 for a given fraction of betting volume.

For the square root model, we write f(Ĩ) as the sum of a bid-ask spread component
and a square root function of |Ĩ|, obtaining f(Ĩ) := (ι2C̄B)

−1κ0+(ι3/2C̄B)
−1κI · |Ĩ|1/2,

where invariance implies that κ0, κI , ι, and C̄B do not vary across stocks. The
proportional cost function C(Q̃) from (9) is given by

C(Q̃) = σ̄

κ0 · W̄−1/3 + κI ·

∣∣∣∣∣Q̃V̄
∣∣∣∣∣
1/2
 . (13)

When transactions costs are measured in units of betting volatility σ̄, bid-ask spread
costs remain proportional to W̄−1/3, but the square root model implies that the
betting activity coefficient W̄ 1/3 cancels out of the price impact term. Indeed, the
square root is the only function for which invariance leads to the empirical prediction
that impact costs (measured in units of returns volatility) depend only on bet size
as a fraction of betting activity Q̃/V̄ and not on any other stock characteristics. If
there are no bid-ask spread costs so that κ0 = 0, then the square root model implies
the parsimonious transactions cost function C(Q̃) = σ̄ · κI · [|Q̃|/V̄ ]1/2.
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Sometimes called by practitioners “the Barra model,” a square root price impact
model like specification (13) was proposed by Barra (1997) based on empirical reg-
ularities observed by Loeb (1983). Grinold and Kahn (1995) use an inventory risk
model to derive a square root price impact formula. Gabaix et al. (2006) formalize
this approach under the assumptions that (1) orders are executed as a constant frac-
tion of volume and (2) liquidity providers have mean-variance utility functions linear
in expected wealth and its standard deviation (not variance).

Invariance of Pricing Accuracy and Market Resiliency. We think of “fun-
damental value” F as the value to which a stock price would converge if traders
continuously invested huge resources acquiring information about its value. Let
Σ denote the variance of the log-difference between price and fundamental value,
Σ := var{ln(F/P )}. Then Σ1/2 measures the standard deviation of this log-difference
as a fraction of the market price, and Σ−1/2 measures “pricing accuracy.”

Black (1986) defines efficient markets using a similar concept of pricing accuracy;
he conjectures that “almost all markets are efficient” in the sense that “price is within
a factor 2 of value” at least 90% of the time. Using our notation, Black’s conjecture
is satisfied if Σ1/2 < ln(2)/1.64 in almost all markets, since the probability that a
normal distribution is within 1.64 standard deviations of its mean is approximately
90%. If Σ1/2 becomes smaller, Black would say that the market has become more
“efficient.”

Fischer Black’s definition of market efficiency based on pricing accuracy contrasts
sharply with the conventional definition of Eugene Fama, who considers a market to
be “efficient” if all available information is appropriately reflected in price, even if
very little information is available and prices are not very accurate, i.e., Σ1/2 is large.

The pricing error variance Σ can be converted into time units by scaling it by fun-
damental volatility σ2. The quantity Σ/σ2 can be further interpreted as the number of
years by which the informational content of prices lags behind fundamental value. For
example, if a stock’s annual volatility is about 35% and Σ1/2 = ln(2)/1.64, then prices
are about 1.50 years “behind” fundamental value since (ln(2)/1.64)2/0.352 ≈ 1.50.

Define “market resiliency” ρ as the mean-reversion parameter (per calendar day)
measuring the speed with which a random shock to prices, resulting from execution
of an uninformative bet, dies out over time as informative orders drive prices towards
fundamental value. The half-life of an uninformative shock to prices is ρ−1 · ln(2).

Market microstructure invariance hypothesizes that pricing accuracy is the same
if its reciprocal is scaled by returns volatility per unit of business time, and market
resiliency is the same if it is measured in units of business time. More specifically,
invariance of pricing accuracy implies that the ratio Σ1/2/[σ̄ ·γ−1/2] is invariant across
stocks. Since 1/L ∝ σ̄ · γ−1/2 from equation (11), invariance also implies propor-
tionality between pricing accuracy Σ−1/2 and liquidity L. Invariance suggests that
the ratio ρ/γ is invariant across stocks, making resiliency proportional to the rate at
which business time passes.
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Using equation (5), invariance implies the following invariance relationships:

Σ1/2 ∝ σ̄ · W̄−1/3 ∝ 1

L
, ρ ∝ W̄ 2/3 ∝ γ. (14)

For example, when trading activity increases by a factor of 8, resiliency increases
by a factor of 4 and pricing accuracy increases by a factor of 2.4 Intuitively, the
unstated invariant proportionality factors implied by equation (14) should be related
to the information content of bets. More informative bets should make markets more
efficient and resilient. This intuition is made precise in the structural model examined
in the next section.

We do not examine empirically the predictions of equation (14); they are however
interesting topics for future research.

Numerical Example. The following example illustrates the invariance hypothe-
ses. Suppose a stock has daily volume of $40 million and daily returns volatility of
2%. Suppose there are approximately 100 bets per day and the mean size of a bet
is $400, 000. A daily volatility of 2% implies a standard deviation of mark-to-market
dollar gains and losses equal to $8, 000 per calendar day for the mean bet. Since
business time passes at the rate bets arrive into the market, 100 bets per day implies
about 1 bet every 4 minutes; the business clock therefore ticks once every 4 min-
utes. Over a 4-minute period, the standard deviation of returns is 20 basis points
(200/

√
100). Thus, the mean bet has a standard deviation of risk transfer of $800

per unit of business time.
Invariance says that the specific number $800 is constant across stocks and across

time. For example, if the arrival rate of bets increases by a factor of 4, the business
clock ticks 4 times faster (once every minute), and the standard deviation of returns
per tick on that clock is reduced from 20 basis points to 10 basis points (200/

√
400).

For the standard deviation of mark-to-market dollar gains and losses on the mean bet
to remain constant at $800, invariance implies that the dollar size of the mean bet
must increase by a factor of 2 from $400, 000 to $800, 000. Thus, holding volatility
constant, the bet arrival rate increases by a factor of 4 and the size of bets increases
by a factor of 2. This implies that daily volume increases by a factor of 8 from $40
million to $320 million. Holding volatility constant, the bet arrival rate increases by
a factor proportional the 2/3 power of the factor by which dollar volume changes,
and the size of bets increases by the 1/3 power of the factor by which dollar volume
changes.

Invariance of transaction costs says that the dollar cost of executing a bet of a
given size percentile is the same across different stocks. The dollar costs of executing
the mean bet is therefore the same constant across securities and across time and,

4If the definition of market efficiency as pricing accuracy in Black (1986) is applied across stocks,
invariance suggests a cut-off value of liquidity L∗ such that stocks with higher liquidity L have
efficient markets and stocks with lower liquidity L have inefficient markets.
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for example, equal to $2, 000. Doubling the size of the mean bet from $400, 000 to
$800, 000 decreases the cost of $2, 000 measured in basis points from 50 basis points
to 25 basis points, i.e., by a factor of 2. The transactions cost of executing a bet,
measured in basis points, is therefore inversely proportional to the 1/3 power of the
factor by which dollar volume changes, holding volatility constant.

Similar arguments are valid for bets in different percentiles of the bet size distri-
bution. Suppose, for example, that the standard deviation of mark-to-market gains
or losses on a 99th percentile bet is $10, 000 per tick of business time (4 minutes).
The size of such a bet is therefore $5 million in the first stock and $10 million in the
second stock, different by a factor of 2. If the dollar costs of executing 99th percentile
bets is equal to $50, 000, then this corresponds to a cost of 100 basis points in the first
stock and 50 basis points in the second stock. The percentage cost for the second
stock is lower by a factor of 2; this difference is inversely proportional to the 1/3
power of the factor by which dollar volume changes, holding volatility constant.

Discussion and Other Implications. Invariance is consistent with irrelevance
of the units in which time is measured. The values of Ĩ, CB(Ĩ), f(Ĩ), and 1/L—
and therefore the economic content of the predictions of invariance—remain the same
regardless of whether researchers measure γ, V̄ , σ̄, and W̄ using daily weekly, monthly,
or annual units of time. This is unlike some other models, such as ARCH and GARCH.

The values of Ĩ and CB(Ĩ) are measured in dollars. Invariance relationships can
also be applied to an international context in which markets have different currencies
or different real exchange rates; they can also be applied across periods of time when
the price level is changing significantly. Invariance is consistent with the idea that
these nominal values Ĩ and CB(Ĩ) should be equal to the nominal cost of financial
services calculated from the productivity-adjusted wages of finance professionals in
the local currency of the given market during the given time period. Since wages are
measured in dollars per day and productivity is measured in bets per day, the ratio of
wages to productivity is measured in dollars per bet, exactly the same units as Ĩ and
CB(Ĩ). Like fundamental constants in physics, dividing the invariants Ĩ and CB(Ĩ)
by the ratio of wages to productivity makes them dimensionless.

We model market microstructure using invariance in a manner similar to the way
modern physicists model turbulence. Kolmogorov (1941a) derived his “two-thirds
law” (or “five-thirds law”) for the energy distribution in a turbulent fluid based on
dimensional analysis and scaling.5

Invariance is also consistent with the Modigliani-Miller irrelevance of leverage and
splits. It can be shown that invariance relationships do not change if a company
levers up its equity by paying a debt-financed cash dividend or implements a stock
split.

5We thank an anonymous referee and Sergey N. Smirnov for pointing out the connection to
Kolmogorov’s model of turbulence.
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Invariance has numerous implications. We outline some of them below to indicate
interesting directions for future research without pursuing them further in this paper.

Invariance relationships are based on the implicit assumption that bets are exe-
cuted at an endogenously determined “natural” speed that trades off the benefits of
faster execution against higher transactions costs. It does not rule out the possibility
that unusually fast execution of a bet would lead to execution costs higher than the
costs implied by the functions f(Ĩ) and CB(Ĩ). For example, it is possible to consider
more general invariant cost functions f(Ĩ , T/γ) and CB(Ĩ , T/γ) that depend not only
of the size of bets but also on execution horizons T converted from units of calendar
time into units of business time T/γ.

Invariance implies that trading liquidity and funding liquidity may be two sides of
the same coin. Trading liquidity is measured by L, which is proportional to W̄ 1/3/σ̄
and γ1/2/σ̄. A good measure of funding liquidity is the repo haircut that sufficiently
protects a creditor from losses if the creditor sells the collateral due to default by
the borrower. Such a haircut should be proportional to the volatility of the asset’s
return over the horizon during which the collateral would be liquidated. This horizon
should be proportional to business time 1/γ, making volatility over the liquidation
horizon proportional to σ̄ ·γ−1/2, which is itself proportional to 1/L. Thus, invariance
suggests that both trading liquidity and funding liquidity can be measured by L.

Asset pricing models often assume that less liquid assets must command a returns
premium to compensate investors for illiquidity. Invariance suggests the hypothesis
that the returns premium required to compensate an investor for asset illiquidity
should be proportional to 1/L. Indeed, suppose that active long only asset managers
are the marginal investors in a universe of stocks with similar turnover rates, and
the costs of bets are imposed pro rata on the investors. Since market capitalization
is proportional to P · V and dollar costs are proportional to the bet arrival rate
γ ∝ W 2/3, percentage costs in basis points are proportional to W 2/3/(PV ) ∝ 1/L.
This argument suggests that the proportionality factor may show up both in returns
and management fees.

Invariance also leads naturally to implications for the time periods over which
institutional investors hold their positions. Active speculative positions are expected
to be held for a period of time proportional to the bet arrival rate γ ∝W 2/3.

2 Market Microstructure Invariance

as an Implication of a Structural Model

In this section, we derive invariance relationships as endogenous implications of a
structural model of informed trading, noise trading, and intermediation (market mak-
ing).

The model has the following structure. The unobserved “fundamental value” of
the stock follows geometric Brownian motion with log-standard-deviation σF . There
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are two types of traders: informed traders and noise traders. Informed traders and
noise traders arrive in the market randomly and trade only once. Each informed
trader trades based on a costly informative signal of precision τ ; the price impact
of the trade incorporates a fraction θ of this private information into prices. In the
spirit of Black (1986), each noise trader trades based on a “fake” signal which has
the same unconditional distribution as an informative signal but has no information
content. We call the noise traders “Fischer Black noise traders.” When an informed
or noise trader arrives in the market, the trader “places a bet” by announcing to
competitive market makers the quantity the trader wishes to trade. Conditional on
this announced quantity but not knowing whether the trader is informed or not,
competitive risk-neutral market makers determine a break-even price at which the
trade takes place. Noise traders place bets at a rate which leads to an exogenously
given turnover rate η of the exogenous float of N shares. Informed traders place bets
at an endogenously determined rate which equates the cost cI of each private signal
to the expected value of trading on that signal, taking into account the price impact
of the bet. Our structural model has the flavor of Glosten and Milgrom (1985) and
Black (1986).

Invariance relationships come about through the following intuition: Suppose the
number of noise traders increases for some exogenous reason. In the structural model,
this happens when the share price and therefore market capitalization increases, keep-
ing the share turnover of noise traders constant. To be specific, assume that the num-
ber of noise traders increases by a factor of 4. As a result, market depth increases
and, consequently, the number of informed traders increases, since their bets now are
more profitable. The structural model shows that the number of informed traders
eventually increases by a factor of 4 as well, and each of their bets accounts for a
4 times smaller fraction of returns variance. Returns volatility per unit of business
time decreases by a factor of 2 (the square root of 4). The structural model shows
that pricing accuracy and liquidity both increase by a factor of 2, as a result of which
informed traders exactly cover the cost of private signals by submitting bets 2 times
as large as before. Overall dollar volume in the market increases by a factor of 8.
Thus, the “one-third, two-thirds” intuition comes about: One-third of the increase in
dollar volume comes from changes in bet size (81/3 = 2) and two-thirds comes from
changes in the number of bets (82/3 = 4).

To make clear the distinction between endogenous variables and exogenous pa-
rameters, we use notation that assumes all exogenous parameters are constants while
all endogenous variables are time-varying. In equilibrium, the price P (t) follows an
endogenously derived martingale process with returns volatility σ(t). The model en-
dogenously determines the rate at which informed bets occur γI(t), the rate at which
bets by noise traders occur γU(t), the distribution of bet sizes Q̃(t), pricing accu-
racy Σ(t)−1/2, market resiliency ρ(t), market illiquidity 1/L(t), and the price impact
parameter λ(t).

In the remainder of this section, we describe the structural model in more detail,
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using notation consistent with the previous section. For simplicity, we assume ζ = 2
and ψ = 1 so that V = V̄ and σ = σ̄. It is straightforward to adjust the model for
ζ ̸= 2 and ψ ̸= 1 by applying equations (1) and (2).

Fundamental Value and Private Information. Let the unobserved “fundamen-
tal value” of the asset follow a geometric Brownian motion given by

F (t) := exp[σF ·B(t)− 1
2
· σ2

F · t], (15)

where B(t) follows standardized Brownian motion with var{B(t+∆t)−B(t)} = ∆t,
the constant σF measures the “Black-Scholes volatility” of the fundamental value,
and the term 1

2
·σ2

F · t makes F (t) follow a martingale. Assume a zero risk-free rate of
interest. Trading takes place over some long finite horizon, ending at a distant date
at which all traders receive a payoff equal to the fundamental value of the asset.

The price changes as informed traders and noise traders arrive into into the market
and anonymously place bets. Risk-neutral market makers set the market price P (t)
as the conditional expectation of the fundamental value F (t) given a history of the
“bet flow,” which we can assume to be informationally equivalent to the history of
prices.

Rather than focusing on the market’s estimate of the fundamental value F (t),
we focus instead on the market’s estimate of the Brownian motion B(t), in terms of
which F (t) is defined. Let B̄(t) denote the market’s conditional expectation of B(t)
based on observing the history of prices. For now, assume that the error B(t)− B̄(t)
has approximately a normal distribution with variance denoted Σ(t)/σ2

F ; scaling by
σ2
F makes the notation Σ(t) consistent with the notation for Σ in section 1.
The price is the best estimate of fundamental value when P (t) is given by

P (t) = exp[σF · B̄(t) + 1
2
· Σ(t)− 1

2
· σ2

F · t]. (16)

The price has a martingale property and the variance of log[F (t)/P (t)] is equal to
Σ(t), i.e. Σ(t)−1/2 Σ(t)−1/2 measures “pricing accuracy.”

Informed Traders. Informed traders arrive randomly into the market at endoge-
nously determined rate γI(t). If an informed trader arrives at time t, he observes one
private signal ĩ(t) in addition to the history of prices , then places one and only one
bet, which is executed by trading with market makers. Informed signals are assumed
to have the form

ĩ(t) := τ 1/2 · Σ(t)−1/2 · σF · [B(t)− B̄(t)] + Z̃I(t), (17)

where τ is an exogenous constant parameter measuring the precision of the signal
and the noise term Z̃I(t) ∼ N(0, 1) is distributed independently from the history of
prices prior to the arrival of the signal. Scaling τ 1/2 by Σ(t)−1/2 ·σF , the reciprocal of
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the standard deviation of B(t)− B̄(t), makes τ measure the constant signal-to-noise
ratio. We assume τ is small enough so that var{̃i(t)} = 1 + τ ≈ 1. Although the
signal associated with the nth bet to arrive is different from previous signals, we omit
a clarifying subscript n on ĩ(t).

An informed trader calculates his prior estimate B̄(t) of B(t) from market prices.
Upon observing a signal ĩ(t), he updates his prior from B̄(t) to B̄(t) + ∆B̄I(t). As-
suming τ is small, the update is given by

∆B̄I(t) ≈ τ 1/2 · Σ(t)1/2 · σ−1
F · ĩ(t), (18)

where τ 1/2 · Σ(t)1/2 · σ−1
F is the regression coefficient of B(t) − B̄(t) on ĩ(t). If the

signal value were to be fully incorporated into prices, it can be shown that the dollar
price change would be equal to

E{F (t)−P (t) |∆B̄I(t)} ≈ P (t)·
(
exp[σF · (∆B̄I(t)−∆B̄I(t)

2/2)]− 1
)
≈ P (t)·σF ·∆B̄I(t).

(19)
We assume that an informed trader arriving at time t executes a bet of size Q̃(t).

In order to break even in the presence of adverse selection, market makers take the
other side of the bet at a price adjusted by λ(t) · Q̃(t), where λ(t) is a price impact
parameter. The price impact is linear in the size of the bet.

Suppose that a bet of size Q̃(t) is a linear multiple of ∆B̄I(t) in such a way that
only a fraction θ of the “fully revealing” impact P (t) ·σF ·∆B̄I(t) is incorporated into
prices, i.e.,

Q̃(t) = θ · λ(t)−1 · P (t) · σF ·∆B̄I(t). (20)

If the informed trader were to trade Q̃(t) shares defined in equation (20) at price P (t)
with no price impact costs, then his unconditional expected “paper trading” profits,
denoted π̄I(t), would be equal to

π̄I(t) := E{[F (t)− P (t)] · Q̃(t)} =
θ · P (t)2 · σ2

F · E{∆B̄I(t)
2}

λ(t)
. (21)

Conditioning on observing the signal ĩ(t), the expected profits of the informed
trader, net of transactions costs λ(t) · Q̃(t)2, are

E{[F (t)−P (t)]·Q̃(t)−λ(t)·Q̃(t)2 |∆B̄I(t)} =
θ · (1− θ) · P (t)2 · σ2

F ·∆B̄I(t)
2

λ(t)
. (22)

It is clear that θ = 1/2 maximizes the expected profits of the informed trader and
therefore solves the optimization problem of a a risk-neutral informed trader. Rather
than assuming that informed traders are risk neutral and therefore θ = 1/2 as the
equilibrium choice of θ, we will instead allow θ to have an arbitrary exogenous value
such that 0 < θ < 1. This approach accommodates the possibility that informed
traders are risk averse, in which case θ < 1/2 might be optimal; it also accommodates
the possibility of information leakage, in which case θ > 1/2 might be optimal. More
importantly, it allows us to show that the invariance results derived below depend
only on the fact that θ is some constant, not that θ has the specific value 1/2.
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Noise Traders. Noise traders arrive randomly at an endogenously determined rate
γU(t). Each noise trader places one bet which mimics the size distribution of an
informed bet, even though it contains no information. In other words, if a noise
trader arrives at time t, he receives a signal ĩ(t) which is assumed to have the same
unconditional distribution as an informed signal, i.e., ĩ(t) = Z̃U(t) ∼ N(0, 1 + τ) ≈
N(0, 1), but it is “noise” in the sense that ĩ(t) is distributed independently from the
error B̄(t)− B(t) and the history of prices. Noise traders are assumed to place bets
at a rate such that a constant fraction η of the market capitalization of the firm turns
over on average per day.

Let N denote the number of shares outstanding, let V (t) denote average share
volume per day from informed and noise traders combined, and let γ(t) := γI(t) +
γU(t) denote the combined arrival rate of bets by informed traders and noise traders.
Let informed trades and noise trades be distributed as the random variable Q̃(t) in
equation (20). Then, expected share volume from noise traders η · N , total volume
V (t), and the fraction of volume from noise traders γU(t)/γ(t) satisfy

γU(t) · E{|Q̃(t)|} = η ·N, γ(t) · E{|Q̃(t)|} = V (t). (23)

Market Makers (Intermediaries). Zero-profit, risk-neutral, competitive market
makers are assumed to set prices such that the price impact of anonymous trades by
informed and noise traders make the price P (t) equal to the conditional expectation
of the fundamental value F (t) given the history of all bets. If market makers could
observe whether a bet was placed by an informed trader or noise trader, they would
multiply the price impact of informed bets λ(t) · Q̃(t) by 1/θ (since informed bets
have price impact which reveals only fraction θ of their information content) and
they would multiply the price impact of noise bets λ(t) · Q̃(t) by zero (since noise bets
have no information content). The probability of an informed bet is γU(t)/γ(t), and
the probability of a noise bet is γU(t)/γ(t). In equilibrium, the average impact of a
bet must satisfy

λ(t) · Q̃(t) = γI(t)

γI(t) + γU(t)
· λ(t) · Q̃(t) · 1

θ
+

γU(t)

γI(t) + γU(t)
· λ(t) · Q̃(t) · 0. (24)

This implies that the fraction of informed traders and noise traders satisfies

γI(t)

γI(t) + γU(t)
= θ. (25)

Thus, the fraction of traders who are informed turns out to be to the exogenous
constant θ. In the special case when informed traders are risk neutral, θ = 1/2 implies
that the number of informed traders is equal to the number of uninformed traders.
Note that this ratio is not determined by equations describing the profitability of
informed trading but rather by equations describing the adverse selection problem
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faced by market makers. Moreover, equations (23) and (25) imply that, in terms of
exogenous variables, share volume V (t) is actually a constant given by

V (t) = η ·N/(1− θ). (26)

Break-Even Conditions. Equation (20) implies that the unconditional expected
price impact cost of an informed bet, denoted C̄B(t), is given by

C̄B(t) := λ(t) · E{Q̃(t)2} =
θ2 · P (t)2 · σ2

F · E{∆B̄I(t)
2}

λ(t)
. (27)

Bets by noise traders have the same expected impact cost since they have the same
unconditional distribution as informed bets and are indistinguishable from informed
bets from the perspective of market makers. The equilibrium level of costs must
allow market makers to break even. Thus, the expected dollar price impact costs
that market makers expect to collect from all traders must be equal to the expected
dollar paper trading profits of informed traders:

(γI(t) + γU(t)) · C̄B(t) = γI · π̄I(t). (28)

Figure 1: Intuition for the Model.
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There is price continuation after an informed trade and mean reversion
after a noise trade.

Figure 1 illustrates the intuition informally and non-rigorously. Informed traders
incorporate only a fraction θ of their information into prices by trading Q̃(t); they
pay transactions costs C̄B(t) and expect to make π̄I(t)− C̄B(t) as the price gradually
converges to fundamental value F (t) due to the subsequent trading of other informed
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traders. These profits are realized at some distant date when the game ends and
positions are liquidated at the fundamental value F (t). Noise traders execute orders
which incur transactions costs C̄B(t) but would earn nothing if there were no trans-
actions costs. As in Treynor (1995), the expected losses market makers incur trading
with informed traders γI(t) · (π̄I(t)− C̄B(t)) are equal to their expected gains trading
with noise traders γU(t) · C̄B(t).

The break-even condition for informed traders yields the rate at which informed
traders place bets γI(t). The expected paper trading profits from trading on a signal
π̄I(t) must equal the sum of expected transaction costs C̄B(t) and the exogenously
constant cost of acquiring private information denoted cI :

π̄I(t) = C̄B(t) + cI . (29)

We let 1/L(t) := C̄B(t)/E{|P (t) · Q̃(t)|} denote the expected percentage cost of
executing a bet in basis points, as in section 1.

Diffusion Approximation and Conditional Steady State. The model theoret-
ically implies that the price follows a jump process which changes when a bet arrives.
Conditional expectations of B̄(t) calculated based on a random number of bet arrivals
during a given time interval are not precisely linear. Moreover, since the price is a
nonlinear function of B̄(t), price impact is theoretically nonlinear as well.

To deal with these non-linearities, we assume that the arrival rate of bets is so
fast—and the resulting price impact of each bet is so small—that a linear approxi-
mation based on a diffusion is appropriate. In the limit as the bet arrival rate γ(t)
goes to infinity, the conditional expectation B̄(t) becomes an exactly linear function
of the history of bets, and the price process becomes a diffusion. This is compatible
with assuming that market makers and traders use linear filtering, market makers
offer linear supply schedules to traders, traders place bets as linear functions of sig-
nals, log-price changes are normally distributed, and price changes are conditionally
normally distributed in the sense of an Euler approximation.

As a result of each bet, market makers update their estimate of B̄(t) by ∆B̄(t)
(not to be confused with the update ∆B̄I(t) of informed traders). A trade is informed
with probability θ and, if informed, incorporates a fraction θ of its information content
into prices, leading to an adjustment in B̄(t) of

∆B̄(t) = θ · τ 1/2 · Σ(t)1/2 · σ−1
F ·

(
τ 1/2 · Σ(t)−1/2 · σF · [B(t)− B̄(t)] + Z̃I(t)

)
(30)

from equations (17) and (18). A trade is uninformed with probability 1 − θ and, if
uninformed, adds noise to B̄(t) of

∆B̄(t) = θ · τ 1/2 · Σ(t)1/2 · σ−1
F · Z̃U(t). (31)

When the arrival rate of bets γ(t) per day is sufficiently large, the diffusion ap-
proximation for the dynamics of the estimate B̄(t) can be written as

dB̄(t) = γ(t) · θ2 · τ · [B(t)− B̄(t)] · dt+ γ(t)1/2 · θ · τ 1/2 · Σ(t)1/2 · σ−1
F · dZ(t). (32)
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The first term corresponds to the information contained in informed signals which
arrive at rate θ · γ(t). The second term corresponds to the noise contained in all
bets arriving at rate γ(t). Here, γ(t)1/2 · dZ(t) is obtained by converting the mixture
of dZI(t) and dZU(t)—with probabilities θ and 1− θ, respectively—into a Brownian
motion dZ(t) with the same variance.

Define σ(t) by
σ(t) := θ · τ 1/2 · Σ(t)1/2 · γ(t)1/2. (33)

By applying Ito’s lemma to the definition of price in equation (16) and using equa-
tion (32), we obtain

dP (t)

P (t)
= 1

2
· [Σ′(t)− σ2

F + σ(t)2] · dt+ σF · dB̄(t). (34)

Market efficiency implies that P (t) must follow a martingale. Its drift therefore must
be zero, implying that Σ(t) must satisfy the differential equation

dΣ(t)

dt
= σ2

F − σ(t)2. (35)

Now define dZ̄(t) := Σ(t)−1 ·σ(t) ·σF · [B(t)− B̄(t)] · dt+ dZ(t). The process Z̄(t)
is a standardized Brownian motion under the market’s filtration, because B̄(t) is the
market’s best estimate of B(t). Equation (32) can now be written in the simplified
form dB̄(t) = σ(t) · σ−1

F · dZ̄(t). Using this fact and substituting dZ̄(t) for dB̄(t), the
price process (34) can be written as the martingale process

dP (t)

P (t)
= σ(t) · dZ̄(t). (36)

Thus, σ(t) measures returns volatility, consistent with our notation σ throughout this
paper.

Returns volatility σ(t) measures the rate at which new information is being incor-
porated into prices. According to equation (33), returns volatility σ(t) is stochastic,
even though fundamental volatility σF is constant. When returns volatility σ2(t) is
greater than fundamental volatility σ2

F , equation (35) says that the difference repre-
sents the rate at which pricing error Σ(t) is falling, since new information is being
incorporated into prices faster than new fundamental uncertainty is unfolding. When
returns volatility σ2(t) is smaller than fundamental volatility σ2

F , the difference rep-
resents the rate at which pricing error Σ(t) is increasing, since new fundamental
uncertainty is unfolding faster than information is being incorporated into prices.

When Σ′(t) = 0, we shall say that Σ(t) has reached a “conditional steady state”
in which the unfolding of new fundamental volatility and the incorporation of new
private information into prices are in balance, i.e., σ(t) = σF . We use this terminology
because the right-hand side of equation (35) does not converge to a constant due to
the fact that the value of γ(t), which follows a diffusion, is constantly changing and
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this makes σ(t) change as well. If γ(t) were to remain constant for a long period of
time, the value of Σ(t) would converge to the conditional steady state given by

Σ(t) =
σ2
F

γ(t) · θ2 · τ
, (37)

obtained from the definition of σ(t) in equation (33) and equation (35) when Σ′(t) = 0.
As changes in prices P (t) lead to immediate changes in market capitalization and
therefore changes in the arrival rate of bets γ(t), the value of Σ(t) gradually drifts to-
wards a “conditional steady state” value.6 According to equation (37), more accurate
signals and more frequent bets make market prices more accurate. The invariance
theorem discussed next applies both in the conditional steady state and outside it.

Equations (32) and (33) imply that the difference B(t)− B̄(t) follows the mean-
reverting process 7

d[B(t)− B̄(t)] = −σ(t)
2

Σ(t)
· [B(t)− B̄(t)] · dt+ dB(t)− σ(t)

σF
· dZ(t). (38)

As in section 1, let market resiliency ρ(t) denote the mean reversion rate at which
pricing errors disappear. We have

ρ(t) =
σ(t)2

Σ(t)
. (39)

Holding returns volatility constant, resiliency is greater in markets with higher pricing
accuracy.

The endogenous quantities in the model are all functions of the two “state vari-
ables” P (t) and Σ(t), which evolve stochastically according to equations (35) and (36),
with stochastic returns volatility given by equation (33). These equations have inter-
esting dynamics due to the fact that business time operates at a faster pace relative
to calendar time when market capitalization and therefore trading volume are higher.
When trading volume is high, bets arrive quickly and Σ(t) moves quickly towards its
conditional steady state level; returns volatility remains close to fundamental volatil-
ity; Σ(t) does not deviate far from its conditional steady state level. When trading
volume is low, bets arrive slowly and Σ(t) adjusts slowly towards its conditional steady
state level; returns volatility may remain below fundamental volatility for extended
periods of time.8

6While it is the level of γ(t) that follows a diffusion, it is the derivative of Σ(t) that follows a
diffusion. Therefore, as γ(t) changes, the value of Σ(t) smoothly moves towards a conditional steady
state value which it is constantly chasing.

7Black (1986) contains the intuition that because transitory noise affects prices, prices have twice
the returns variance as fundamental value, and this is associated with mean reversion in returns.
Equation (38) shows that, in a steady state, Black’s intuition applies to the log-ratio of prices to
fundamental value, not to prices themselves (equation (36)), which have a martingale property.
Black (1986) may have been confusing the properties of prices with the properties of the ratio of
fundamental value to price.

8It can be shown that (with probability one) (1) a stock’s fundamental value will eventually
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Solution of the Model with Invariance. The following invariance theorem states
that all of the invariance hypotheses in section 1 are implied by this structural model
and reveals specific connections among the hypotheses.

Invariance Theorem. Assume the cost cI of generating a signal is an invariant
constant and let m := E{|̃i(t)|} define an additional invariant constant. Then, the
invariance conjectures hold: The dollar risk transferred by a bet per unit of business
time Ĩ(t) is a random variable with an invariant distribution and the expected cost of
executing a bet C̄B(t) is an invariant constant:9

Ĩ(t) :=
P (t) · Q̃(t) · σ(t)

γ(t)1/2
=
Q̃(t)

V (t)
·W (t)2/3 · (m · c̄B)1/3 = c̄B · ĩ(t). (40)

C̄B(t) = c̄B := cI · θ/(1− θ). (41)

The number of bets γ(t), their size Q̃(t), liquidity L(t), pricing accuracy 1/Σ(t)1/2, and
market resiliency ρ(t) are related to price P (t), share volume V (t), volatility σ(t), and
trading activityW (t) = P (t)·V (t)·σ(t) by the following invariance relationships, which
are consistent with the invariance relationships in equations (5), (6), (8), and (14):

γ(t) =

(
λ(t) · V (t)

σ(t) · P (t) ·m

)2

=

(
E{|Q̃(t)|}
V (t)

)−1

=
(σ(t) · L(t))2

m2
=

σ(t)2

θ2 · τ · Σ(t)
=

ρ(t)

θ2 · τ
=

(
W (t)

m · c̄B

)2/3

.

(42)
Here, τ is the precision of a signal, and θ is the fraction of information ĩ(t) incor-
porated by an informed trade. The price follows a martingale with stochastic returns
volatility σ(t) := θ · τ 1/2 · Σ(t)1/2 · γ(t)1/2.

Proof of Invariance Conjectures and Relationships. Using equations (25), (28),
and (29), we obtain equation (41). The value c̄B = θ · cI/(1 − θ) is constant across
stocks, since cI is constant across stocks by assumption and θ is constant across
stocks by assumption (or, alternatively, by proof that θ = 1/2 for risk-neutral in-
formed traders).

Dividing the definition Ĩ(t) := P (t) · Q̃(t) ·σ(t) · γ(t)−1/2 by the equation C̄B(t) :=
λ(t) · E{Q̃(t)2}, plugging in the definitions of Q̃(t) and ∆B̃I(t) from equations (18)
and (20), and using definition (33), we obtain the third equality Ĩ(t) = c̄B · ĩ(t) in
equation (40); the first equality in equation (40) is the definition of Ĩ(t) and the

become very small (since it follows a geometric Brownian motion which is also a martingale), (2)
both the bet arrival rate and returns volatility will eventually converge to zero, (3) and Σ(t) will
eventually become unboundedly large. This is consistent with the interpretation that almost all
stocks are eventually de-listed. As Keynes would say, in the long run, all companies are dead.

9In this theorem, “invariance” means that the values of the constants cI , m, and C̄B(t) as well
as the distribution of Ĩ(t) do not vary with time. In a model with different securities, they would
not vary across securities either.
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second equality (involving W 2/3) will follow from equation (42) below. Since ĩ(t) is
invariant by assumption and c̄B is invariant by proof, Ĩ(t) = c̄B · ĩ(t) has an invariant
distribution. Note that both Ĩ(t) and c̄B are measured in dollars while ĩ(t) represents
unit-less information.

We write equation (23) for daily volume, equation (27) for expected costs, and
equation (33) for returns volatility using equations (18) and (20) as a system of three
equations:

γ(t) · E{|Q̃(t)|} = V (t), (43)

c̄B = λ(t) · E{Q̃2(t)}, (44)

γ(t) · λ(t)2 · E{Q̃(t)2} = P (t)2 · σ(t)2. (45)

These three equations reflect the economic assumptions important for deriving
invariance. Equation (43) says that observable trading volume results from bets.
Equation (44) says that the expected price impact cost of a bet is c̄B (which is constant
from equation (41)) assuming the bet has linear price impact costs. Equation (45) says
that the price impact of a bet generates returns volatility, also under the assumption
that price impact is linear. Note that the concepts of “price impact cost” and “price
impact,” which both depend on the linear price impact parameter λ(t) in the model,
actually represent somewhat different concepts, which happen to be the same in a
dealer market model in which markets are semi-strong efficient and dealers make zero
profits based on linear signal processing. In the structural model, it is a derived result
that price impact and transaction costs are linear.

In the three equations (43), (44), and (45), one can think of γ(t), λ(t), E{Q̃(t)2},
and E{|Q̃(t)|} as unknown variables to be solved for in terms of known variables
V (t), c̄B, P (t), and σ(t). Since there are three equations and four unknowns, we need
a fourth equation. The fourth equation is the moment ratio

m =
E{|Q̃(t)|}

[E{Q̃(t)2}]1/2
. (46)

Since m := E{|̃i|}, this equation follows from the fact that Q̃(t) is a linear multiple of
ĩ(t) and ĩ(t) has a variance of one. Since ĩ(t) is assumed to have a normal distribution
with a variance of one, we have m = (2/π)1/2. For a different distributional assump-
tions, m would have a different value. If we think of m as an exogenous parameter,
we now have four equations in four unknowns.

Using the definition of m and the definition of trading activity W (t) = P (t) ·
V (t) · σ(t), we can solve equations (43), (44), and (45) for γ(t), E{|Q̃(t)|}, and λ(t),
as follows. Multiply the product of (43) and (44) by the square root of (45) and solve
for γ(t) to obtain

γ(t) = (m · c̄B)−2/3 ·W (t)2/3. (47)

Divide the product of (45) and the square of (44) by (43) and solve for E{|Q̃(t)|}
using (46) to obtain

E{|Q̃(t)|} = (m · c̄B)2/3 · V (t) ·W (t)−2/3. (48)
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Divide the product of (45) and the square root of (44) by (43) and solve for λ(t) to
obtain

λ(t) =

(
m2

c̄B

)1/3

· 1

V (t)2
·W (t)4/3. (49)

Equation (48) and the definition of illiquidity 1/L(t) := c̄B/[P (t) · V (t)] imply that
1/L satisfies

1

L(t)
=

(
m2

c̄B

)−1/3

· σ(t) ·W (t)−1/3. (50)

Equations (33), (39), and (47) imply that pricing accuracy 1/Σ(t)1/2 and resiliency
ρ(t) satisfy

ρ(t) =
σ(t)2

Σ(t)
=

(
1

m · c̄B

)2/3

· θ2 · τ ·W (t)2/3. (51)

Equations (47) for γ(t), (48) for Q̃(t), (50) for 1/L(t), and (51) for 1/Σ(t)1/2

and ρ(t) are summarized in equation (42). They are respectively equivalent to equa-
tions (5), (6), (8), and (14) implied by the market microstructure invariance hypothe-
ses in section 1, since E{|̃i|} = m implies E{|Ĩ|} = m · c̄B from (40).

Since trading activityW (t) and its components are observable, we can empirically
infer values of γ(t), E{|Q̃(t)|}, 1/L(t), λ(t), 1/Σ(t)1/2 and ρ(t) from equation (42) if
the values of the three constants m, c̄B, and θ

2τ are known.

Discussion. The model adds additional structure that imposes restrictions on the
three invariance hypotheses outlined in section 1. These additional assumptions im-
pose a particular structure on the proportionality constants in invariance relation-
ships (5), (6), (9), and (14) and allow us to write these disconnected relationships in
a consolidated form of the invariance theorem (42).

The level of trading activity W (t) and its components—prices P (t), share volume
V (t), and returns volatility σ(t)—are “macroscopic” quantities whose value can be
estimated from aggregate market data, e.g., from the CRSP dataset. The bet arrival
rate γ(t), the bet size Q̃(t), the average cost of a bet 1/L(t), pricing accuracy Σ(t)1/2,
and resiliency ρ(t) are granular “microscopic” quantities whose values are difficult to
observe even with data on individual trades by individual traders. Since knowledge
of the constants c̄B, m, and τ · θ2 makes it possible to infer microscopic quantities
from macroscopic quantities using equation (42), these constants play roles in our
structural model somewhat similar to the role played by Boltzmann’s constant or
Avogadro’s number in physics.

For example, the structural model implies a particular relationship between the
invariance of bet sizes and transaction costs. Equation (40) suggests that the bet size
invariant Ĩ and transaction costs invariant c̄B satisfy the restriction E|Ĩ| = m · c̄B or,
equivalently, that the standard deviation of Ĩ is equal to c̄B. This restriction follows
from the assumption that market makers break even.
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The structural model also implies a particular relationship between the invari-
ance of pricing accuracy and the invariance of resiliency. In the model, the result
ρ(t) = σ(t)2/Σ(t) implies a specific restriction on the proportionality constants in
equations (14).10

In section 1, invariance relationships for bets and transaction costs were derived
based on the assumption that the cost of executing a bet c̄B is constant across stocks.
The structural model shows that c̄B is not the “deepest” structural parameter in the
model. The result c̄B = θ · cI/(1 − θ) implies that c̄B is constant across stocks if
the “deeper” structural parameters cI and θ are constant across stocks. It is useful
to think of the cost of private information cI as proportional to the average wages
of finance professionals, adjusted for their productivity or effort required to generate
one bet. The productivity-adjusted wage of a finance professional is therefore a
“deeper” parameter than the endogenous cost of executing a bet c̄B. The invariance
relationships in equation (42) result from finance professionals allocating their skills
across different markets to maximize the value of trading on the signals they generate.
The assumption that distinct bets result from distinct pieces of private information
implies a particular level of granularity for both signals and bets.

It is interesting that invariance relationships relating the granularity of bets to
their costs depend on the first absolute moment of the distribution of signals m, but
not on the precision of signals τ .

The structural model also shows that the invariance of pricing accuracy and re-
siliency requires stronger assumptions: In addition to c̄B and m being constant, the
informativeness of a bet τ · θ2, measured as the product of signal precision τ and
the squared fraction of informed traders θ2, must be constant across time (or across
stocks) as well.

Although the structural model is motivated by the time series properties of a
single stock as its market capitalization changes, the model applies cross-sectionally
across different securities under the assumption that the exogenously assumed cost of
a private signal cI , the shape of the distribution of signals m, and the informativeness
of bets τ · θ2 are constant across all markets.

10This restriction suggests an empirical strategy for calibrating Black’s measure of market effi-
ciency, which is difficult to observe directly. A value for Σ can be inferred indirectly from an estimate
of ρ, which can be obtained by examining how fast price effects from noise trades die out over time (or
from examining how long traders hold actively managed positions based on a more general model in
which positions are liquidated after some fraction of their information content is revealed in prices).
For example, if a stock’s annual volatility is about 35% and Σ1/2 = ln(2)/1.64, then prices are about
1.50 years “behind” fundamental value, i.e., Σ/σ2 = (ln(2)/1.64)2/0.352 ≈ 1.50, as discussed in
section 1. The error B(t) − B̄(t) in equation (38) mean-reverts to zero at rate ρ = σ2 · Σ−1, or
ρ = 0.352/(ln(2)/1.64)2 = 0.69 per year. This implies that the half-life of the price impact of a noise
trade is ln(2)/ρ ≈ 1. Black (1986) could, therefore, have equivalently defined an efficient market as
one in which the half-life of the price impact of noise trades is less than one year.
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Robustness of Assumptions. Our structural model makes restrictive assump-
tions which lead to specific properties of equilibrium. Private signals are normally
distributed. Bets are linear functions of private signals and are therefore also nor-
mally distributed. Price impact is linear in bet size. Informed traders place one bet
in a dealer market setting rather than shredding bets into many pieces and executing
them at an equilibrium speed over time. Dealers do not make profits; there are no bid-
ask spread costs; there are no “effective bid-ask spread” costs related to immediate
reversal of temporary price impact in executing bets.

The empirical results we are about to describe are not consistent with the “linear-
normal” features of the structural model, but are consistent with the more general
invariance hypotheses concerning bet size and transactions costs in section 1. In sec-
tion 5, we find that the size of unsigned bets closely fits a log-normal distribution, not
a normal distribution. In section 6, we find that a linear price impact model predicts
transaction costs reasonably well, but a square root model predicts transaction costs
better than a linear model.

We conjecture that it should be possible to modify our structural model to ac-
commodate non-normally distributed bet size, non-linear price impact, and dynamic
execution of bets at an equilibrium speed proportional to the rate at which business
time unfolds.

Although the structural model assumes that fundamental volatility σF , shares out-
standing N , and noise-trader turnover rate η are constants, it is also straightforward
to modify the model so that these quantities vary over time or across stocks.

We provide a discussion of the invariance hypotheses in section 1 separately from
the discussion of the structure model in this section because the invariance hypotheses
are likely to hold more generally than under the somewhat restrictive assumptions
of our structural model. The structural model is to be interpreted as a “proof of
concept,” while the invariance hypotheses should apply more generally.

3 Microstructure Invariance in the Context of the

Market Microstructure Literature

Market microstructure invariance builds a bridge from theoretical models of market
microstructure to empirical tests of those models. Theoretical microstructure models
usually suggest measures of liquidity based on the idea that order flow imbalances
move prices. By scaling business time to be proportional to the rate at which bets
arrive, market microstructure invariance imposes cross-sectional (or time-series) re-
strictions which make it easier to implement liquidity measures based on order flow
imbalances.

Many theoretical models use game theory to model trading. These models typ-
ically make specific assumptions about the risk aversion of traders, the consistency
of beliefs across traders, the flow of public and private information which informed
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traders use to trade, the flow of orders from liquidity traders, and auction mechanisms
in the context of which market makers compete to take the other sides of trades. Some
models emphasize adverse selection, such as Treynor (1995), Kyle (1985), Glosten
and Milgrom (1985), and Back and Baruch (2004); some models emphasize inventory
dynamics, such Grossman and Miller (1988) and Campbell and Kyle (1993); some
models emphasize both, such as Grossman and Stiglitz (1980) and Wang (1993).

While these theoretical models are all based on the idea that order flow imbalances
move prices (with particular parameters depending on specifics of each model), it has
proven difficult to infer from these models precise empirical implications. Theoreti-
cal models usually provide neither a unified framework for mapping the theoretical
concept of an order flow imbalance into its empirical measurements nor precise pre-
dictions concerning how price impact varies across different stocks.

Instead, researchers have taken an approach based on ad hoc empirical intuition.
For example, price changes can be regressed on imperfect empirical proxies for order
flow imbalances—e.g., the difference between uptick and downtick volume, popular-
ized by Lee and Ready (1991)—to obtain market impact coefficients, which can then
be related to stock characteristics such as market capitalization, trading volume, and
volatility. Breen, Hodrick and Korajczyk (2002) is an example of this approach. A
voluminous empirical literature describes how the rate at which orders arrive in cal-
endar time, the dollar size of orders, the market impact costs, and bid-ask spread
costs vary across different assets. For example, Brennan and Subrahmanyam (1998)
estimate order size as a function of various stock characteristics. Hasbrouck (2007)
and Holden, Jacobsen and Subrahmanyam (2015) provide surveys of this empirical
literature.

In contrast to this literature, microstructure invariance generates precise empir-
ically testable predictions about how the size of bets, arrival rate of bets, market
impact costs, and bid-ask spread costs vary across assets with different levels of trad-
ing activity. These predictions are consistent with intuition shared by many models.
The unidentified parameters in theoretical models show up as invariant constants
(e.g., E{|Ĩ|} and C̄B), which can be calibrated from data.

In this sense, microstructure invariance is a modeling principle applicable to dif-
ferent models, not a model itself. It compliments theoretical models by making it
easier to test them empirically.

Applying Invariance to the Model of Kyle (1985). Consider, for example,
the continuous-time theoretical model of Kyle (1985). The market depth formula
λ = σV /σU in that model measures market depth (in units of dollars per share per
share) as the ratio of the standard deviation of stock price changes σV (measured
in dollars per share per square root of units of time) to the standard deviation in
order flow imbalances σU (measured in shares per square root of units of time). This
formula asserts that price fluctuations result from the linear impact of order flow
imbalances. The market depth formula itself does not depend on specific assumptions
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about interactions among market makers, informed traders, and noise traders. An
empirical implementation of the market impact formula λ = σV /σU should not be
considered a test of the specific assumptions of the model of Kyle (1985), such as
the existence of a monopolistic informed trader who trades smoothly and patiently
in a context where less patient liquidity traders trade more aggressively and market
makers set stock prices efficiently. Instead, empirical implementation of the formula
λ = σV /σU attempts the more general task of measuring a market impact coefficient
λ based on the assumption that price fluctuations result from the linear impact of
order flow innovations, a property shared by many models, including the structural
model in section 2.

Measuring the numerator σV is much more straightforward than measuring the
denominator σU . The value of σV is easily inferred from a stock price and returns
volatility. In the context of our structural model (where σ = σ̄), we have σV = σ̄ · P .

Measuring the denominator σU is difficult because the connection between ob-
served trading volume and order flow imbalances is not straightforward. Intuitively,
σU should be related to trading volume in some way. The continuous-time model
provides no help concerning what this relationship is; in the Brownian motion model
of Kyle (1985), trading volume is infinite. Without some approach for measuring σU ,
the model is untestable. In the context of our structural model, order flow imbalances
result from random discrete decisions by traders to change stock holdings so that the
standard deviation of order imbalances is given by σU = γ1/2 · [E{Q̃(t)2}]1/2. This
calculation is also consistent with the spirit of other models, such as Glosten and
Milgrom (1985) and Back and Baruch (2004).

The formulas for the numerator and denominator imply that the price impact of
a bet of X shares, expressed as a fraction of the value of a share P , is given by

λ

P 2
· (X · P ) = σV

σU
· X
P

= σ̄γ−1/2 · X

[E{Q̃(t)2}]1/2
. (52)

Thus, a one-standard deviation bet X = [E{Q̃(t)2}]1/2 has a price impact σ̄γ−1/2

equal to one standard deviation of returns volatility σ̄ measured over a time interval
of length 1/γ, i.e., the expected time between bet arrivals. Empirical tests of this
formula require assumptions about Q̃ and γ, which decompose the order flow so that
the standard deviation of order flow imbalances can be calculated.

This formula can be tested empirically using restrictions imposed by microstruc-
ture invariance. Using equations (5) and (6) to determine how γ and moments of Q̃
vary with observable volume and volatility, we find that the price impact cost of an
order of dollar size X · P , as a fraction of the value traded, is

λ

P 2
· (X ·P ) := σ̄

P · γ1/2 · (EQ̃2)1/2
· (X ·P ) = E{|Ĩ|}]2/3

[E{Ĩ2}]1/2
· σ̄

P · V̄
· W̄ 1/3 · (X ·P ). (53)

The percentage price impact is proportional to W̄ 1/3 · σ̄/(P · V̄ ), which itself is pro-
portional to the illiquidity measure 1/L2. As a consequence of the hypothesis, which
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implies that the size and number of bets vary with the 1/3 and 2/3 exponents of
trading activity, the distribution of Ĩ invariant. Since this makes the proportional-
ity constant [E{Ĩ2}]−1/2 · E{|Ĩ|}]2/3 invariant as well, implementation of the market
impact formula (53) requires calibration of only one proportionality constant for all
stocks and all time periods. Note that this constant does not depend on the units of
time in which variables are measured, because Ĩ itself does not depend on time units.

As an alternative to invariance, the formula λ = σV /σU can be implemented
empirically by imposing different assumptions concerning the connection between σU
and trading volume. For example, we can assume that the expected arrival rate of
bets is some unknown constant, the same for all stocks; this will imply that σU is
proportional to volume V and illiquidity measure in formula (52) is proportional to
σ/(P · V ). We obtain

λ

P 2
· (X · P ) := σ̄

P · γ1/2 · (EQ̃2)1/2
· (X · P ) ∝ σ̄

P · V̄
· (X · P ). (54)

This empirical implementation of the formula can be thought of as the illiquidity ratio
in Amihud (2002). Indeed, Amihud’s illiquidity ratio is the time-series average of the
daily ratios of the absolute value of percentage returns to dollar volume. To the extent
that dollar volume is relatively stable across time and returns are drawn from the same
distribution, illiquidity ratio is effectively proportional to σ/(P · V ). Although this
is a logically consistent way to connect theory with empirical implementation, it is
unrealistic to assume that the most actively traded and least actively traded stocks
have the same number of bets per day; empirical intuition suggests that stocks with
high levels of trading activity have more bets per day than stocks with low levels of
trading activity. We are aware of no empirical studies which claim that the number
of orders or bets in different stocks is the same.

The same issue can be addressed by thinking about time units. Unlike our illiq-
uidity measure 1/L = ι2C̄B · [P · V̄ /σ̄2]−1/3, the Amihud ratio σ/(P · V ) has time
units: σ2 and P · V have the same time units, but σ and P · V do not; Amihud’s
ratio thus depends on the time horizon at which volume and volatility are measured.
To keep the left-hand side consistent with the right-hand side of equation (54), the
proportionality constant in that equation must change when time units are changed.
Furthermore, if the invariance-implied market impact formula (53) is correct, then
Amihud’s market impact formula (54) theoretically implies a different proportionality
constant for every stock. This problem can be “fixed”—i.e., the same proportionality
coefficient can be obtain for every stock using Amihud’s approach—if data for each
stock is sampled at a different stock-specific frequency appropriate to the stock’s level
of trading activity. Invariance implies that the appropriate sampling frequency should
be proportional to 1/γ, which is proportional to W−2/3.

Illiquidity ratios calculated using data sampled at the same calendar time frequen-
cies, as proposed originally and implemented in many empirical studies, implicitly rely
on the unrealistic assumption that the standard deviation of order imbalances is pro-
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portional to trading volume. In contrast, our illiquidity measure 1/L does not depend
on time units, and therefore it does not matter over what time horizons its compo-
nents are measured; even if different horizons are used for different stocks, its value
will be the same.

4 Data

Portfolio Transitions Data. We test the empirical implications of market mi-
crostructure invariance using a proprietary dataset of portfolio transitions from a
leading vendor of portfolio transition services. During the evaluation period, this
portfolio transition vendor supervised more than 30 percent of outsourced U.S. port-
folio transitions. The sample includes 2,552 portfolio transitions executed over the
period 2001-2005 for U.S. clients. A portfolio transition may involve orders for hun-
dreds of individual stocks. Each order is a stock-transition pair potentially executed
over multiple days using a combination of internal crosses, external crosses, and open-
market transactions.

The portfolio transitions dataset contains fields identifying the portfolio transi-
tion; its starting and ending dates; the stock traded; the trade date; the number of
shares traded; a buy or sell indicator; the average execution price; the pre-transition
benchmark price (closing price the day before the transition trades began); commis-
sions; SEC fees; and a trading venue indicator distinguishing among internal crossing
networks, external crossing networks, open market transactions, and in-kind transfers.

When old “legacy” and new “target” portfolios overlap, positions are transferred
from the legacy to the new portfolio as “in-kind” transfers. For example, if the legacy
portfolio holds 10, 000 shares of IBM stock and the new portfolio holds 4, 000 shares
of IBM, then 4, 000 shares are transferred in-kind and the balance of 6, 000 shares is
sold. The in-kind transfers do not incur transactions costs and have no effect on our
empirical analysis. The 6, 000 shares sold constitute one “portfolio transition order,”
even if the 6, 000 shares are sold over multiple days.

We augment the portfolio transitions data with stock price, returns, and volume
data from CRSP. Only common stocks (CRSP share codes of 10 and 11) listed on
the New York Stock Exchange (NYSE), the American Stock Exchange (Amex), and
NASDAQ in the period from January 2001 through December 2005 are included in
the sample. ADRs, REITs, and closed-end funds are excluded. Also excluded are
stocks with missing CRSP information necessary to construct variables used for em-
pirical tests, transition orders in high-priced Berkshire Hathaway class A shares, and
transition observations which appeared to contain typographical errors and obvious
inaccuracies. Since it is unclear from the data whether adjustments for dividends and
stock splits are made in a consistent manner across all transitions, all observations
with non-zero payouts during the first week following the starting date of portfolio
transitions were excluded from statistical tests.
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After exclusions, there are 439,765 observations (“orders”), including 201,401 buy
orders and 238,364 sell orders.

CRSP Data: Prices, Volume, and Volatility. For each of the transition-stock
observations (i = 1, . . . , 439765), we collect data on pre-transition benchmark price,
expected volume, and expected volatility. The benchmark price, denoted P0,i, is
the closing price for the stock the evening before the first trade is made in any of the
stocks in the portfolio transition. A proxy for expected daily trading volume, denoted
Vi (in shares), is the average daily trading volume for the stock in the previous full
pre-transition calendar month.

The expected volatility of daily returns, denoted σi for order i, is calculated using
past daily returns in two different ways.

First, for each security j and each calendar month m, we estimate the monthly
standard deviation of returns σj,m as the square root of the sum of squared daily
returns for the full calendar month m (without de-meaning or adjusting for autocor-

relation). We define σi = σj,m/N
1/2
m , where j corresponds to the stock traded in order

i, m is the previous full calendar month preceding order i, and Nm is the number of
CRSP trading days in month m.

Second, to reduce effects from the positive skewness of the standard deviation
estimates, we estimate for each stock j a third-order moving average process for
the changes in ln(σj,m) for all months m over the entire period 2001-2005: (1 −
L) ln(σj,m) = Θj,0+(1−Θj,1L−Θj,2L

2−Θj,3L
3)uj,m. Letting yj,m denote the estimate

of ln(σj,m) and V̂j the variance of the prediction error, we alternatively define the

conditional forecast for the volatility of daily returns by σi = exp(yj,m + V̂j/2)/N
1/2
m ,

where m is the current full calendar month for order i.
These volatility estimates can be thought of as instrumental variables for true

expected volatility. While below we report results using the second definition of σi
based on the log-ARIMA model, these results remain quantitatively similar when we
use the first definition of σi based on simple historical volatility during the preceding
full calendar month.

Except to the extent that the ARIMA model uses in-sample data to estimate
model parameters, we use the pre-transition variables known to the market before
portfolio transition trades are executed in order to avoid any spurious effects from
using contemporaneous variables.

Descriptive Statistics. Table 1 reports descriptive statistics for traded securities
in panel A and for individual transition orders in panel B. The first column reports
statistics for all securities in aggregate; the remaining ten columns report statistics
for stocks in ten dollar volume groups. Instead of dividing the securities into ten
deciles with the same number of securities in each decile, volume break points are set
at the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of trading
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volume for the universe of stocks listed on the NYSE with CRSP share codes of 10 and
11. Group 1 contains stocks in the bottom 30th percentile of dollar trading volume.
Group 10 approximately corresponds to the universe of S&P 100 stocks. The top
five groups approximately cover the universe of S&P 500 stocks. Narrower percentile
bands for the more active stocks make it possible to focus on the stocks which are
most important economically. For each month, the thresholds are recalculated and
the stocks are reshuffled across bins.

Panel A of table 1 reports descriptive statistics for traded securities. For the entire
sample, the median daily volume is $18.72 million, ranging from $1.13 million for the
lowest volume group to $212.85 million for the highest volume group. The median
volatility is 1.93 percent per day, ranging from 1.76 percent in the highest volume
decile to 2.16 in the lowest decile. Since there is so much more cross-sectional variation
in dollar volume than in volatility across stocks, the variation in trading activity across
stocks is related mostly to variation in dollar volume. Trading activity differs by a
factor of 150 between stocks in the lowest group and stocks in the highest group, and
this variation creates statistical power helpful in determining how transactions costs
and order sizes vary with trading activity.

The median quoted bid-ask spread, obtained from the transition dataset, is 12.04
basis points; its mean is 25.42 basis points. From lowest volume group to highest vol-
ume group, the median spread declines monotonically from 40.96 to 4.83 basis points,
by a factor of 8.48. A back-of-the-envelope calculation based on invariance suggests
that spreads should decrease approximately by a factor of 1501/3 ≈ 5.31 from lowest
to highest volume group. The difference between 5.31 and 8.48 is partially explained
by differences in returns volatility across the volume groups and warrants further
investigation.The monotonic decline of almost one order of magnitude is potentially
large enough to generate significant statistical power in estimates of a bid-ask spread
component of transactions costs based on implementation shortfall.

Panel B of table 1 reports properties of portfolio transition order sizes. The average
order size is 4.20% of average daily volume, declining monotonically across the ten
volume groups from 16.23% in the smallest group to 0.49% in the largest group, by
a factor of 33.12. The median order is 0.57% of average daily volume, also declining
monotonically from 3.33% in the smallest group to 0.14% in the largest group, by a
factor of 23.79. The invariance hypothesis implies that order sizes should decline by a
factor of approximately 1502/3 ≈ 28.23, a value which matches the data closely. The
medians are much smaller than the means, indicating that distributions of order sizes
are skewed to the right. We show below that the distribution of order sizes closely
fits a log-normal.

The average trading cost (estimated based on implementation shortfall, as ex-
plained below) is 16.79 basis points per order, ranging from 44.95 basis points in the
lowest volume group to 6.16 basis points in the highest volume group. Invariance
suggests that these costs should fall by a factor of 1501/3 ≈ 5.31, somewhat smaller
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than the actual decline. The cost estimates exclude commissions and SEC fees.11

One portfolio transition typically contains orders for dozens or hundreds of stocks;
it typically takes several days to execute all of the orders. About 60% of orders are
executed during the first day of a portfolio transition. Since transition managers often
operate under a “cash-in–advance” constraint—using proceeds from selling stocks
in a legacy portfolio to acquire stocks in a target portfolio—sell orders tend to be
executed slightly faster than buy orders (1.72 days versus 1.85 days). In terms of
dollar volume, about 41%, 23%, 15%, 7%, and 5% of dollar volume is executed on
the first day through the fifth days respectively. The two longest transitions in the
sample were executed over 18 and 19 business days. The time frame for a portfolio
transition is usually set before its actual implementation begins.

5 Empirical Tests Based on Order Sizes

Market microstructure invariance predicts that the distribution of W̄ 2/3 · Q̃/V̄ does
not vary across stocks or time (see equation (6)). We test these predictions using
data on portfolio transition orders, making the identifying assumption that portfolio
transition orders are proportional to bets.

Portfolio Transitions and Bets. Since bets are statistically independent intended
orders, bets can be conceptually difficult for researchers to observe. Consider, for
example, a trader who makes a decision on Monday to make one bet to buy 100,000
shares of stock, then implements the bet by purchasing 20,000 shares on Monday
and 80,000 shares on Thursday. To an econometrician, this one bet for 100,000
shares may be difficult to distinguish from two bets for 20,000 shares and 80,000
shares respectively. In the context of a portfolio transition, identifying a bet is easier
because the size of the order for 100,000 shares is known and recorded on Monday,
even if the order is executed over several subsequent days.

Portfolio transition orders may not have a size distribution matching precisely
the size distribution of typical bets. Transition orders may be smaller than bets if
transitions tend to liquidate a portion of an asset manager’s positions or larger than
bets if transitions liquidate the sum of bets made by the asset manager in the past.
When both target and legacy portfolios hold long positions in the same stock, the
portfolio transition order may represent the difference between two bets.

Let Xi denote the unsigned number of shares transacted in portfolio transition
order i, i = 1, . . . , 439765. The quantity Xi sums shares traded over multiple days,

11The SEC fee represents a cost of about 0.29 basis points and does not vary much across volume
groups. From lowest to highest volume group, these costs fall by a factor of 7.30. The average
commission is 7.43 basis points, declining monotonically from 14.90 basis points for the lowest group
to 2.68 basis points for the highest group. Since commissions may be negotiated for the entire
transition, the allocation of commission costs to individual stocks is an accounting exercise with
little economic meaning.
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excluding in-kind transfers.
We make the identifying assumption that, for some constant δ which does not vary

across stocks with different characteristics such as trading activity, the distribution
of scaled portfolio transition orders δ ·Xi is the same as the distribution of unsigned
bets in the same stock at the same time, denoted |Q̃|. If δ = 1, the distribution of
portfolio transition orders matches the distribution of bets.

The Empirical Hypotheses of Invariance and Log-Normality for the Size
Distribution of Portfolio Transition Orders. Let Wi := Vi · Pi · σi and W̄i :=
V̄i · Pi · σ̄i denote trading activity and betting activity, respectively, for the stock in
transition order i. Under the identifying assumption that portfolio transition orders
are proportional to bets, invariance of bets implies invariance of portfolio transition
orders. Specifically, replacing Q̃ with Xi in equation (6) implies that the distribution

of W̄
2/3
i · Xi/V̄i does not vary with stock characteristics such as volume, volatility,

stock price, or market capitalization.
To facilitate intuitive interpretation of parameter estimates, we scale observations

by a hypothetical “benchmark stock” with share price P ∗ of $40, daily volume V ∗ of
one million shares, and volatility σ∗ of 2% per day, implyingW ∗ = 40 ·106 ·0.02. This
benchmark stock would belong to the bottom tercile of S&P 500 (volume group 7 in
table 1).

Combining invariance of portfolio transition orders with equations (1) and (2) to
convert the betting activity variables W̄i and V̄i into trading activity variablesWi and
Vi and taking logs, invariance implies the empirically testable relationship

ln
([Wi

W ∗

]2/3
· Xi

Vi

)
= ln(q̄) + ϵ̃i. (55)

Under the identifying assumptions that the volume multiplier ζ, the volatility mul-
tiplier ψ, and the deflator δ do not vary across observations, ln(q̄) is an invariant
constant ln(q̄) = E{ln(|Q̃∗|/V ∗)} − ln(δ) and ϵ̃i is a zero-mean error with the same
invariant distribution as ln(|Ĩ|) − E{ln(|Ĩ|)}.12 Adjustment by W ∗ in equation (55)
scales each observation on the left side so that it has the same invariant distribution as
the log of a hypothetical portfolio transition order in the benchmark stock, expressed
as a fraction of its expected daily volume.

We will also examine the stronger log-normality hypothesis—not implied by mi-
crostructure invariance—that the distribution of unsigned order sizes adjusted for
trading activity [Wi/W

∗]2/3 ·Xi/Vi has a log-normal distribution, i.e., ϵ̃i in equation
(55) has a normal distribution. The log-normality hypothesis implies that the right-
side of equation (55) is characterized by two invariant constants, the mean ln(q̄) and
the variance of ϵ̃i.

Next, we implement several tests to examine this hypothesis.

12More generally, ln(q̄) := E{ln(|Q̃∗|/V ∗)} − 1/3 ln(ζi/ζ
∗)− 2/3 ln(ψi/ψ

∗)− ln(δi).
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The Graphical Relationship Between Order Sizes and Trading Activity.
One way to examine the invariance hypothesis is to plot the log of order size as a
fraction of average daily volume ln[Xi/Vi] against the log of scaled trading activity
ln[Wi/W

∗]. Figure 4 presents a cloud of points for all 400,000+ portfolio transition
orders. The line ln[Xi/Vi] = −5.71−2/3·ln[Wi/W

∗] is also shown for comparison. The
slope of this line is fixed at −2/3, as implied by invariance; the intercept, estimated
from an OLS regression, is the sample mean. On the horizontal axis, zero represents
the log of trading activity in the benchmark stock; on the vertical axis, zero represents
orders for 100% of expected daily volume. The shape of the “super-cloud” conforms
well with the invariance hypothesis in that the slope of −2/3 is close to the shape of
the plotted points and there is only little evidence of heteroscedasticity.

Log-Normal Order Size Distribution for Volume and Volatility Groups.
When the portfolio transition orders are sorted into different groups based on charac-
teristics such as dollar volume, volatility, stock price, and turnover, the joint hy-
potheses of invariance and log-normality imply that the means and variances of
ln[[Wi/W

∗]2/3 · Xi/Vi] for each group should match the mean and variance of the
pooled sample. The pooled sample mean of ln[[Wi/W

∗]2/3 · Xi/Vi] is −5.71; the
pooled sample variance is 2.53. The pooled sample mean is an estimate of ln(q̄); the
pooled sample variance is an estimate of the variance of the error ϵ̃i.

13

To examine this hypothesis visually, we plot the empirical distributions of the left-
hand side of equation (55), ln[[Wi/W

∗]2/3 ·Xi/Vi], for selected volume and volatility
groups. As before, we define ten dollar volume groups with thresholds corresponding
to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of NYSE
dollar volume. We define five volatility groups with thresholds corresponding to
the 20th, 40th, 60th, and 80th percentiles of returns standard deviation for NYSE
stocks. On each plot, we superimpose the bell-shaped density function N(−5.71, 2.53)
matching the mean and variance of the pooled sample.

Figure 2 shows plots of the empirical distributions of ln[[Wi/W
∗]2/3 · Xi/Vi] for

volume groups 1, 4, 7, 9, and 10 and for volatility groups 1, 3, and 5. Consistent with
the invariance hypothesis, these fifteen distributions of W -adjusted order sizes are all
visually strikingly similar to the superimposed normal distribution. Results for the
remaining 35 subgroups also look very similar and therefore are not presented in this
paper. The visual similarity of the distributions is reflected in the similarity of their
first four moments. For the 15 volume-volatility groups, the means range from −6.03
to −5.41, close to the mean of −5.71 for the pooled sample. The variances range from
2.23 to 2.90, also close to the variance of 2.53 for the pooled sample. The skewness
ranges from −0.21 to 0.10, close to skewness of zero for the normal distribution. The
kurtosis ranges from 2.73 to 3.38, also close to the kurtosis of 3 for a normal random
variable. These results suggest that it is reasonable to assume that unsigned order

13There is not much difference in the distributions of buy and sell orders. For buy orders, the
mean is −5.70 and the variance is 2.51; for sell orders, the mean is −5.71 and the variance is 2.55.
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sizes have a log-normal distribution. Scaling order sizes by [W/W ∗]2/3, as implied by
the invariance hypothesis, adjusts the means of the distributions so that they visually
appear to be similar.

Despite the visual similarity, a Kolmogorov-Smirnov test rejects the hypothesis
that all fifty empirical distributions are generated from the same normal distribution.
The standard deviation of the means across bins is larger than implied by a common
normal distribution. Microstructure invariance does not describe the data perfectly,
but it makes a good benchmark from which the modest deviations seen in these plots
can be investigated in future research.

Figure 3 further examines log-normality by focusing on the tails of the distri-
butions of portfolio transition orders. For each of the five volume groups 1, 4, 7,
9, and 10, panel A shows quantile-quantile plots of the empirical distribution of
ln[[Wi/W

∗]2/3 ·Xi/Vi] versus a normal distribution with the same mean and variance.
The more similar these empirical distributions are to a normal distribution, the closer
the plots should be to the 45-degree line. Panel B shows logs of ranks based on scaled
order sizes. Under the hypothesis of log-normality, the right tail should be quadratic.
A straight line in the right tail implies a power law. Both panels show that the em-
pirical distributions are similar to a normal distribution, except in the far right and
left tails.

In panel A, the smallest orders in the left tails tend to be smaller than implied
by a normal distribution. These observations are economically insignificant. Most
of them represent one-share transactions in low-price stocks (perhaps the result of
coding errors in the data). There are too few such orders to have a meaningful effect
on our statistical results.

In panel A, the largest orders in the right tails are much more important econom-
ically. On each subplot, a handful of positive outliers (out of 400,000+ observations)
do not appear to fit a normal distribution. The largest orders in low-volume stocks
appear to be smaller than implied by a normal distribution, and the largest orders in
high-volume stocks appear to be larger than implied by a normal distribution.

The finding that the largest orders in low-volume stocks are smaller than implied
by a log-normal may be explained by reporting requirements. When an owner ac-
quires more than 5% of the shares of a publicly traded company, the SEC requires
information to be reported on Schedule 13D. To avoid reporting requirements, large
institutional investors may intentionally acquire fewer shares when intended holdings
would otherwise exceed the 5% reporting threshold. Indeed, all 400,000+ portfolio
transition orders are for amounts smaller than 4.5% of shares outstanding. A closer
examination reveals that the five largest orders for low-volume stocks accounts for
about 2%, 3%, 4%, 4%, and 4% of shares outstanding, respectively, just below the
5% threshold. The largest order in high-volume stocks is for about 1% of shares
outstanding.

To summarize, we conclude that the distribution of portfolio transition order
sizes appears to conform closely to—but not exactly to— the invariance hypothesis.
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Furthermore, the distribution of order sizes appears to be similar to—but not exactly
equal to—a log-normal.

OLS Estimates of Order Size. The order size predictions from equation (55) can
also be tested using a simple log-linear OLS regression

ln
[Xi

Vi

]
= ln

[
q̄
]
+ α0 · ln

[Wi

W ∗

]
+ ϵ̃i. (56)

Invariance of bets implies α0 = −2/3.
To adjust standard errors of OLS estimates of α0 for positive contemporaneous

correlation in transition order sizes across different stocks, the 439, 765 observations
are pooled by week over the 2001-2005 period into 4, 389 clusters across 17 industry
categories. The double clustering by weeks and industries conservatively adjusts
standard errors for large portfolio transitions that may involve hundreds of relatively
large orders, executed during the course of a week and potentially concentrated in
particular industries.14

Table 2 presents estimates for the OLS coefficients in equation (56). The first
column of the table reports the results of a regression pooling all the data. The four
other columns in the table report results for four separate OLS regressions in which
the parameters are estimated separately for NYSE Buys, NYSE Sells, NASDAQ Buys,
and NASDAQ Sells.

For the entire sample, the estimate for α0 is α̂0 = −0.62 with standard error of
0.009. Economically, the point estimate for α0 is close to the value −2/3 predicted
by the invariance hypothesis, but the hypothesis α0 = −2/3 is strongly rejected
(F = 25.31, p < 0.0001) because the standard error is very small.

When the sample is broken down into NYSE Buys, NYSE Sells, NASDAQ Buys,
and NASDAQ Sells, it is interesting to note that the estimated coefficients for buy
orders, −0.63 for NYSE and −0.71 for NASDAQ, are closer to −2/3 than the coeffi-
cients for sell orders, −0.59 for both NYSE and NASDAQ. Since portfolio transitions
tend to be applied to long-only portfolios, sell orders tend to represent liquidations
of past bets. If the size distribution of sell orders depends on past values of volume
and volatility—not current values—there is an errors-in-variables problem related to
past trading activity being used as a noisy version of current trading activity. This
will bias the absolute values of coefficient estimates downwards, consistent with the
absolute values of the coefficient estimates for NYSE and NASDAQ sell orders being
less than 2/3.

14A potential econometric issue with the log-linear specification in equation (56) is that taking
the log of order size as a fraction of average daily volume may create large negative outliers from
tiny, economically meaningless orders, with an inordinately large influence on coefficient estimates.
Since we have shown above that the shape of the distribution of scaled order sizes closely matches
a log-normal, these tiny orders are expected to have only a negligible distorting effect on estimates.
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Quantile Estimates of Order Sizes. Table 7 in the Appendix presents quan-
tile regression results for equation (56) based on the 1st (smallest orders), 5th, 25th,
50th, 75th, 95th, and 99th percentiles (largest orders). The corresponding quantile
estimates for α0 are −0.65, −0.64, −0.61, −0.62, −0.61, −0.64, and −0.63, respec-
tively. Although the hypothesis α0 = −2/3 is rejected due to small standard errors,
all quantile estimates are economically close to the value of −2/3 predicted by the
invariance hypothesis.

Model Calibration and Its Economic Interpretation. Under the invariance
and log-normality hypotheses, we can calibrate the distribution of bet sizes by im-
posing the restriction α0 = −2/3 on equation (56). Thus, only the constant term in
the regression needs to be estimated.

The results of this calibration exercise are presented in table 3. The estimated con-
stant term, −5.71, is the previously reported sample mean of ln(q̄) in equation (55).
The mean-square error, 2.53, is the previously reported sample variance of ϵ̃i in equa-
tion (55).

The R2 (with zero degrees of freedom) is 0.3149; the log of trading activity
ln(W/W ∗), with the coefficient α0 = −2/3 imposed by invariance, explains a sig-
nificance percentage of the variation of order size as a fraction of volume Xi/Vi.

When the parameter α0 is estimated rather than held fixed, changing α0 from the
predicted value of α0 = −2/3 to the estimated value of α̂0 = −0.62 increases the
R2 from 0.3149 (table 3) to 0.3167 (table 2), a modest increase of 0.0018. Although
statistically significant, the addition of one degree of freedom does not add much
explanatory power.

We relax the specification further by allowing the coefficients on the three compo-
nents of trading activity—volatility σi, price P0,i, and volume Vi—as well as monthly
turnover rate νi to vary freely:

ln
[Xi

Vi

]
= ln

[
q̄
]
+α0·ln

[Wi

W ∗

]
+b1·ln

[ σi
0.02

]
+b2·ln

[P0,i

40

]
+b3·ln

[ Vi
106

]
+b4·ln

[ νi
1/12

]
+ϵ̃i.

(57)
This regression imposes on ln[Wi/W∗] the coefficient α0 = −2/3 predicted by in-

variance and then allows the coefficients b1, b2, b3, b4 on the three components of
Wi and turnover rate to vary freely. The invariance hypothesis implies b1 = b2 =
b3 = b4 = 0. Table 3 reports that increasing the degrees of freedom from one to
four increases the R2 of the regression from 0.3167 to 0.3229, an increase of 0.0062.
Although again statistically significant, the improvement in R2 is again modest. In-
variance explains much—but not quite all—of the variation in portfolio transition
order size across stocks that can be explained by all four variables.

The point estimates for the coefficient on volatility of b̂1 = 0.42, the coefficient
on price of b̂2 = 0.24, the coefficient on share volume of b̂3 = 0.06, the coefficient on
turnover rate of b̂4 = −0.18 are all statistically significant, with standard errors of
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0.040, 0.019, 0.010, and 0.015, respectively (see table 8 in the Appendix). The coeffi-
cients on volatility and price are significantly positive, indicating that order size—as
a fraction of average daily volume—does not decrease with increasing volatility and
price as fast as predicted by the invariance hypothesis. The statistically significant
positive coefficient on volume may be partially offset by a statistically significant
negative coefficient on turnover rate.

Discussion. The documented log-normality of bet size is strikingly different from
the typical assumptions of microstructure models, where innovations in order flow
from noise traders are distributed as a normal, not a log-normal or power law. Al-
though normal random variables are a convenient modeling device—they allow con-
ditional expectations to be linear functions of underlying jointly normally distributed
variables—their implications are qualitatively very different.

The estimated log-mean of −5.71 implies that a median portfolio transition or-
der size is equal to 0.33% of expected daily volume for the benchmark stock, since
exp(−5.71) ≈ 0.0033. The estimated log-variance of 2.53 implies that a one standard
deviation increase in order size is a factor of 4.90 for all stocks, since exp(2.531/2) ≈
4.90.

We next explain why the log-variance of 2.53 also implies that a large fraction of
trading volume and an even larger fraction of returns variance come from large bets.

Let η(z) and N(z) denote the PDF and CDF, respectively, of a standardized
normal distribution. Define F (z̄, p) by F (z̄, p) :=

∫∞
z=z̄

exp(p ·
√
2.53 ·z) ·η(z) ·dz. It is

easy to show that F (z̄, p) = exp(p2 ·2.53/2) · (1−N(z̄−p ·
√
2.53)). This implies that

the fraction of the pth moment of order size arising from bets greater than z̄ standard
deviations above the log-mean is given by F (z̄, p)/F (−∞, p) = 1−N(z̄ − p ·

√
2.53).

Plugging p = 1, we find that bets larger than z̄ standard deviations above the log-
mean (median) generate a fraction of total trading volume given by 1−N(z̄−

√
2.53).

Bets larger than the 50th percentile generate 94.41% of trading volume (z̄ = 0). Bets
larger than than

√
2.53 standard deviations above the log-mean (median) bet size—

i.e., the largest 5.39% of bets—generate 50% of trading volume (z̄ =
√
2.53).

Plugging p = 2, we find that bets larger than z̄ standard deviations above the
log-mean bet size contribute a fraction of total returns variance given by 1−N(z̄ −
2 ·

√
2.53) under the assumption that the contribution of bets to price variance is

proportional to their squared size (implied by linear price impact). Bets greater than
the 50th percentile generate 99.93% of returns variance (z̄ = 0). Bets larger than
than 2 ·

√
2.53 = 3.18 standard deviations above the log-mean—i.e., the largest 0.07%

of bets—generate 50% of returns variance (z̄ = 2 ·
√
2.53).

Under the assumptions ζ/2 = ψ = δ = 1 (stronger than our identifying assump-
tions), the estimates of mean and variance imply that the benchmark stock has about
85 bets per day for each of the 252 trading days in a calendar year. These estimates
then imply that the 1, 155 largest bets out of 21, 420 bets generate approximately half
of the trading volume during one year, and the 15 largest bets generate approximately
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half of returns variance during one year.
Rare large bets may not only account for a significant percentage of returns vari-

ance but may also account for some of the stochastic time series variation in volatility.
We conjecture that the pattern of short term volatility associated with execution of
rare large bets may depend on the speed with which such bets are executed. Large
market disturbances such as the stock market crash of 1929 and 1987, the liquidation
of Jerome Kerviel’s rogue trades by Société Générale, and the flash crash of May 6,
2010, could have been induced by execution of gigantic bets.

Another implication of log-normality may be greater kurtosis in the empirical
distribution of price changes than a normal distribution would suggest. Given the
estimated log-variance of 2.53, the excess kurtosis of one bet has the enormous value
of exp(10), or about 22,000. Thus, excess kurtosis in daily price changes may be
influenced more by the kurtosis of individual bets than by the random number of
bets arriving each day.

Invariance implies a different way of thinking about trading data from that in the
“time change” literature, which goes back to Mandelbrot and Taylor (1967) and Clark
(1973). Mandelbrot and Taylor (1967) begin with the intuition that the distribution of
price changes is a stable distribution, i.e., a distribution such that a linear combination
of two independent random variables has the same shape, up to location and scale
parameters. Since it has fatter tails than a normal distribution, it is confined to
be a stable Pareto distribution. Following this line of research, the econophysics
literature—such as Gopikrishnan et al. (1998), Plerou et al. (2000), and Gabaix et al.
(2006)—estimates different power-laws for the probability distributions of different
variables and searches for price-formation models consistent with those distributions.
Whether order size follows a power law or a log-normal distribution is an interesting
question for future research.

Clark (1973) suggests as an alternative hypothesis that the distribution of daily
price changes is subordinated to a normal distribution with a time clock linked to
a log-normally distributed trading volume. The log-normal distribution is neither
stable nor infinitely divisible; the sum of random variables with independent log-
normal distributions is not log-normal. Thus, if daily price changes can be described
by Clark’s hypothesis, neither half-day price changes nor weekly price changes will
be described by the same hypothesis.

In some sense, our approach seems to be closer to Mandelbrot and Taylor (1967),
who imagine orders of different sizes arriving in the market, with business time linked
to their arrival rates rather than to trading volume.

Empirical regularities similar to those implied by invariance can be inferred from
the previous literature. Bouchaud, Farmer and Lillo (2009) report, for example, that
the number of TAQ prints per day is proportional to market capitalization raised to
powers between 0.44 to 0.86. Under the assumption that volatility and turnover rates
are stable across stocks as shown in table 1, the midpoint 0.65 of that interval is close
to the value of 2/3 implied by invariance for the number of bets per day.
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The log-normality of bet size may be related to the log-normality of assets under
management for financial firms. Schwarzkopf and Farmer (2010) study the size of
U.S. mutual funds and find that its distribution closely conforms to a log-normal
with log-variance of about 2.50, similar to our estimates of log-variance for portfolio
transition orders. Their annual estimates of log-variance are stable during the twelve
years from 1994 to 2005, ranging from 2.43 to 2.59. For years 1991, 1992, and 1993,
the log-variance estimates of 1.51, 1.98, and 2.09 are slightly lower, probably because
many observations are missing from the CRSP U.S. mutual funds dataset for those
years.

As discussed by Aitchison and Brown (1957), log-normal distributions can be
found in many areas of natural science. For example, Kolmogorov (1941b) proves
mathematically that the probability distribution of the sizes of particles under frag-
mentation converges over time to a log-normal.

6 Empirical Tests Based on Transactions Costs

To examine statistically whether transactions costs conform to the predictions of mar-
ket microstructure invariance in equation (9), we use the concept of implementation
shortfall developed by Perold (1988). Specifically, we estimate costs by comparing the
average execution prices of portfolio transition orders with closing prices the evening
before any portfolio transition orders begin to be executed. Our tests measure implicit
transactions costs resulting from bid-ask spreads and market impact; they exclude
explicit transactions costs such as commissions and fees.

Portfolio Transitions and Implementation Shortfall. In portfolio transitions,
quantities to be traded are known precisely before trading begins, these quantities
are recorded accurately, and all intended quantities are executed. In other trading
situations, quantities intended to be traded may not be recorded accurately, and
orders may be canceled or quantities may be revised in response to price movements
after trading begins. When orders are canceled after prices move in an unfavorable
direction or when order size is increased after prices move in a favorable direction,
implementation shortfall may dramatically underestimate actual transactions costs.
Portfolio transitions data are not subject to these concerns.

Portfolio transition trades are unlikely to be based on short-lived private infor-
mation about specific stocks because decisions to undertake portfolio transitions and
their timing likely result from regularly scheduled meetings of investment committees
and boards of plan sponsors, not from fast-breaking private information in the hands
of fund managers. Transactions cost estimates are therefore unlikely to be biased
upward as a result of short-lived private information being incorporated into prices
while orders are being executed.

These properties of portfolio transitions are not often shared by other data. Con-
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sider a dataset built up from trades by a mutual fund, a hedge fund, or a proprietary
trading desk at an investment bank. In such samples, the intentions of traders may
not be recorded in the dataset. For example, a dataset might time stamp a record
of a trader placing an order to buy 100,000 shares of stock but not time stamp a
record of the trader’s actual intention to buy another 200,000 shares after the first
100,000 shares are bought. Furthermore, trading intentions may not coincide with
realized trades because the trader changes his mind as market conditions change.
Indeed, traders often condition their trading strategies on prices by using limit orders
or canceling orders, thus hard-wiring into their strategies a selection bias problem for
using such data to estimate transactions costs. The dependence of actually traded
quantities on prices usually makes it impossible to use implementation shortfall in a
meaningful way to estimate market depth and bid-ask spreads from data on trades
only. Portfolio transitions data are particularly well suited for using implementation
shortfall to measure transactions costs because portfolio transitions data avoid these
sources of statistical bias.

The Empirical Hypotheses of Invariance and a Power Function Specifi-
cation for Transaction Costs. For each unsigned transition order Xi, let IBS,i

denote a buy-sell indicator variable which is +1 for buy orders and −1 for sell or-
ders. For transition order i, let Ci denote the expected transactions cost as a frac-
tion of the value transacted. Let Si denote the implementation shortfall, defined by
Si = IBS,i · (Pex,i − P0,i)/P0,i, where Pex,i is the average execution price of order i
and P0,i is its benchmark price. Implementation shortfall is positive when orders are
unusually costly and negative when orders are unusually cheap.

Invariance imposes the restriction that the unobserved transactions cost Ci has
the form given in equation (10):

Ci = σ̄i · W̄−1/3
i ·

(
ι2 · C̄B · f

(W̄ 2/3
i

ι
· IBS,i ·Xi

V̄i

))
. (58)

Under the stronger hypothesis that the cost function has a power specification for
market impact costs, invariance implies the generalization of equations (12) and (13)

Ci = σ̄i · W̄−1/3
i ·

(
κ0 + κI ·

(
W̄

2/3
i · Xi

V̄i

)z)
, (59)

where z = 1 for the linear specification and z = 1/2 for the square root specification.
Next, we test whether the cost functions can be in fact represented as the product

of σ̄i · W̄−1/3
i and an invariant function of W̄

2/3
i · [Xi/V̄i].

The predictions invariance makes about transactions costs can be expressed in
terms of a non-linear regression. To justify nonlinear regression estimation, we can
think of implementation shortfall as representing the sum of two components: (1) the
transactions costs incurred as a result of order execution and (2) the effect of other
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random price changes between the time the benchmark price is set and the time the
trades are executed. If we make the identifying assumption that the implementation
shortfall from the portfolio transition dataset is an unbiased estimate of the transac-
tions cost, we can think of modeling the other random price changes as an error in a
regression of implementation shortfall on transactions costs.

For example, suppose that while one portfolio transition order is being executed,
there are 99 other bets being executed at the same time. The temporary and perma-
nent price impact of executing the portfolio transition order shows up as a transactions
cost, while the temporary and permanent price impact of the other 99 unobserved
bets being executed shows up as other random price changes. Since the portfolio tran-
sition order is one of 100 bets being simultaneously executed, the R2 of the regression
is likely to be about 0.01.

To further develop a non-linear regression framework for testing invariance, we
need to make several adjustments.

First, using equation (1) and equation (2), we replace the “bar” variables σ̄, V̄ ,
and W̄ with observable variables σ, V , and W and with potentially unobservable
constants. We also incorporate the assumption that portfolio transition orders are
proportional to bets.

Second, since we want the error in our regression of implementation shortfall on
transaction costs be positive when the stock price is moving up and negative when
the stock price is moving down, we multiply both the implementation shortfall Si

and the transactions cost function C(Xi) by the buy-sell indicator. The regression
specification can be then written IBS,i · Si = IBS,i · Ci + ϵ̃i. Note that IBS,i · Si =
(Pex,i − P0,i)/P0,i since I2BS,i = 1. This gives us a non-linear regression of the form

IBS,i · Si = IBS,i ·
[ ψ
ψ∗

]2/3[ ζ
ζ∗

]1/3[ σi
σ∗

][Wi

W ∗

]−1/3

· f(Ii · δ−1)/L∗ + ϵ̃i, (60)

where Ii := ϕ−1 · (Wi/W
∗)2/3 ·Xi/Vi, with invariant constant ϕ obtained from equa-

tion (6) and illiquidity measure for the benchmark stock 1/L∗ := ι2 · C̄B · σ̄∗ · [W̄ ∗]−1/3

obtained from equation (8).15 Note that f(Ii · δ−1)/L∗ denotes the invariant cost
function for the benchmark stock, expressed as a fraction of notional value, similar
to equation (9).

Third, since Wi, Xi, and Vi are observable, the quantity ϕ · Ii is observable. The
quantity Ii itself in equation (60), however, is not observable because the constant ϕ is
defined in terms of potentially unobservable constants ι, δ, ψ, and ζ. To estimate the
nonlinear regression equation (60), we substitute for f(.) a different function f ∗(.)
defined by f ∗(x) = (ψ/ψ∗)2/3 · (ζ/ζ∗)1/3 · f(ϕ−1δ−1x). Using x = ϕ · Ii, the right
side of equation (60) becomes a simpler expression in terms of observable data, with
various potentially unobserved constants incorporated into the definition of f∗, whose
functional form is to be estimated from the data. Under the identifying assumptions

15More specifically, ϕ := δ−1ιψ−2/3(ζ/2)−1/3(W ∗)−2/3.
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ψ = ψ∗ and ζ = ζ∗, we have f ∗(ϕIi) = f(Ii ·δ−1), where ϕ ·Ii := (Wi/W
∗)2/3 ·Xi/Vi is

observable. The unobserved constants hidden in ϕ affect the economic interpretation
of the scaling of the estimated functional form for f∗(.), but they do not otherwise
affect the estimation itself.

Fourth, the variance of errors in the regression is likely to be proportional in size
to the variance of returns and the execution horizon. On average, portfolio transition
orders tend to be executed in about one day. To correct for heteroscedasticity resulting
from differences in return volatility, we divide both the right and left sides by return
volatility σi/σ

∗, where σ∗ = 0.02. Indeed, this adjustment makes the root mean
squared error of the resulting regression approximately equal to 0.02.

Fifth, to control for the economically and statistically significant influence that
general market movements have on implementation shortfall, we add the CRSP value-
weighted market return Rmkt,i on the first day of the transition to the right side of
the regression equation. To the extent that portfolio transition orders are sufficiently
large to move the entire U.S. stock market, this adjustment will result in understated
transactions costs by measuring only the idiosyncratic component of transactions
costs. It is an interesting subject for future research to investigate how large trades
in multiple stocks affect general market movements.

Upon making these two changes and using the definition of f∗(.), regression equa-
tion (60) becomes

IBS,i · Si ·
(0.02)

σi
= βmkt ·Rmkt,i ·

(0.02)

σi
+ IBS,i ·

[Wi

W ∗

]α
· f ∗(ϕIi)/L

∗ + ϵ̃i. (61)

where invariance implies α = −1/3. One of our tests is designed to examine this
prediction.

Scaling by W ∗ makes the function f∗(ϕIi)/L
∗ in equation (61) measure the trans-

actions cost for the benchmark stock in terms of the observable value ϕIi. Although
invariance itself does not specify a function form for f∗(.)/L∗, the regression places
strong cross-sectional restrictions on the shape of the transactions cost function. In
addition to the restriction α = −1/3, it requires that the same function f ∗(ϕIi)/L

∗

with ϕIi = (Wi/W
∗)2/3 ·Xi/Vi for order i be used for all stocks. We test this prediction

as well.
We do not undertake separate estimates of transactions cost parameters for inter-

nal crosses, external crosses, and open market transactions. Such estimates would be
difficult to interpret due to selection bias resulting from transition managers optimally
choosing trading venues to minimize costs.

To adjust standard errors for positive contemporaneous correlation in returns, the
observations are pooled by week over the 2001-2005 period into 4,389 clusters across
17 industry categories using the pooling option on Stata.

Dummy Variable Regression. In our first test, we fix α = −1/3 in transaction
costs regression equation (61), estimate function f ∗(.)/L∗ using dummy variables,
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and examine calibrated functions across ten volume groups. Invariance predicts those
functions to be similar. The test does not put restrictions on the specific functional
forms of f∗(.).

We sort all 439, 765 orders into 100 order size bins of equal size based on the value
of the “invariant” order size ϕ · Ii = [Wi/W

∗]2/3 · [Xi/Vi]. As before, we also place
each order into one of ten volume groups based on average dollar trading volume
in the underlying stock PiVi, with thresholds corresponding to the 30th, 50th, 60th,
70th, 75th, 80th, 85th, 90th, and 95th percentiles of NYSE dollar volume. As shown
in section 5, the distribution of ϕIi is approximately invariant across volume groups;
specifically, across all volume groups k = 1, . . . , 10, each bin h has a similar number
of observations and similar magnitudes for ϕIi.

In the regression equation (61), we replace the function f ∗(ϕIi)/L
∗ with 1, 000

dummy variables D∗
i (k, h), k = 1, . . . , 10 and h = 1, . . . , 100, where D∗

i (k, h) = 1
if bet i belongs to volume group k based on dollar volume PiVi and to order size
bin h based on ϕIi; otherwise D∗

i (k, h) = 0. We then estimate 1, 000 coefficients
f∗(k, h)/L∗, k = 1, . . . , 10, h = 1, . . . , 100 for the dummy variables using a separate
OLS regression for each of the volume groups, k = 1, . . . , 10,

IBS,i ·Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
+ IBS,i ·

[Wi

W ∗

]−1/3

·
100∑
h=1

D∗
i (k, h) ·f ∗(k, h)/L∗+ ϵ̃i.

(62)
For each volume group k, the 100 dummy variable coefficients f ∗(k, h)/L∗ (where

h = 1, . . . , 100) track the shape of function f∗(.)/L∗, without imposing any particular
restrictions on its functional form. Invariance predicts that the ten values of the
coefficients f ∗(k, h)/L∗, k = 1, . . . , 10 should be the same for each order size bin h,
h = 1, . . . , 100. In other words, f ∗(k, h)/L∗ is predicted not to depend on volume-
group index k.

Figure 5 shows ten plots, one for each of the ten volume groups, with the 100
estimated coefficients for the dummy variables plotted as solid dots in each plot. On
each plot, we also superimpose the 95% confidence intervals for 100 dummy variable
coefficients estimated based on the pooled sample (dotted lines). The superimposed
confidence bands help to assess the degree of similarity between cost functions esti-
mated separately based on observations in each volume bin.

On each of the ten plots, the horizontal and vertical axes are scaled in the same
way to facilitate comparison. On the horizontal axis, we plot the value for order-
size bin h equal to the log of the average ϕIi for observations in that size bin and
corresponding volume group k.

On the right vertical axis, we plot the values of the dummy variable coefficients
f∗(k, h)/L∗ quantifying for the benchmark stock the cost function as a fraction of
notional value, scaled in basis points. To make deviations of cost patterns from
invariants visually obvious, we have effectively scaled cost functions as suggested
by invariance using regression (62): We multiply orders sizes Xi/Vi by (Wi/W

∗)2/3
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and divide implementation shortfalls Si by L∗/L = (σi/σ
∗) · (Wi/W

∗)−1/3. Here
1/L∗ := ι2 · C̄B · σ̄∗ · [W̄ ∗]−1/3 is the illiquidity measure for the benchmark stock from
equation (60). The invariance hypothesis implies that the 100 points plotted for each
of the 10 volume groups will describe the same underlying cost function when the
vertical axis is scaled according to invariance.

On the left vertical axis, we plot actual average transactions cost f∗(k, h)/Lk as a
fraction of notional value, scaled in basis points. For each volume group k, this scaling
reverses invariance-based scaling by multiplying estimated coefficients f ∗(k, h)/L∗ by
L∗/Lk, where 1/Lk is the illiquidity measure for orders in volume group k given by
1/Lk := ι2 · C̄B · σ̄k

med · (W̄ k
med)

−1/3, with σ̄k
med denoting median betting volatility and

W̄ k
med denoting median betting activity for volume group k.
Without appropriate scaling, the data do not reveal their invariant properties.

The actual costs on the left vertical axes vary significantly across volume groups. In
the low volume group, costs range from −220 basis points to 366 basis points; in the
high volume group, costs range from −33 basis point to 55 basis points, 7 times less
than in the low volume group.

After applying “invariance” scaling, however, our plots appear to be visually con-
sistent with the invariance hypothesis. For all ten subplots in figure 5, the estimated
dummy variable coefficients on the right vertical axes are very similar across volume
groups. They also line up along the superimposed confidence band.

Moving from low-volume groups to high-volume groups, these estimates also be-
come visually more noisy. For low-volume group 1, dummy variable estimates lie
within the confidence band, very tightly pining down the estimated shape for the
function f ∗(.)/L∗. For high-volume group 10, many dummy variable estimates lie
outside of the confidence band, with 11 observations above the band and about 40
observations below the band. These patterns suggest that the statistical power of our
tests concerning transactions costs comes mostly from low-volume groups.

Invariance suggests that orders might be executed over horizons inversely propor-
tional to the speed of business time, implying very slow executions for large orders
in stocks with low trading activity. Portfolio transitions are, however, usually im-
plemented within a clearly defined tight calendar time frame, which has the effect
of speeding up the “natural” execution horizon for stocks with low trading activity.
When transition orders are executed over a fixed number of calendar days, the exe-
cution in business time is effectively faster for low-volume stocks and slower for high-
volume stocks. When a transition order in a low-volume stock is being executed, there
are therefore probably fewer other bets being executed at the same time; this makes
the R2 of the regression higher. Over the same period of calendar time, more bets are
being executed for the high-volume stocks, making the R2 lower than for low-volume
stocks. The more patient business-time pace of execution for high-volume stocks may
explain why the dummy variable estimates are noisier for high-volume stocks than
for low-volume stocks. This may also explain why the execution costs of high volume
stocks appear to be slightly less expensive than low-volume stocks.
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Transactions Cost Estimates in Non-Linear Regression. Next, we test the
hypothesis α = −1/3 in transaction cost regression equation (61) while simultane-
ously calibrating a specific functional form for the cost function f ∗(.)/L∗. We assume
that this function has a particular parametric functional form equal to the sum of a
constant bid-ask spread term and a market impact term which is a power of ϕ ·I, sim-
ilar to equation (59). For this particular specification, the non-linear regression (61)
can be written as

IBS,i ·Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
+IBS,i ·κ∗0 ·

[Wi

W ∗

]α1

+IBS,i ·κ∗I ·
[Wi

W ∗

]α2

·
[ ϕIi
0.01

]z
+ϵ̃i,

(63)
where ϕIi/0.01 = [Wi/W

∗]2/3 · Xi/[0.01Vi]. The explanatory variables are scaled so
that, for the benchmark stock, execution of one percent of daily volume has price
impact cost of κ∗I and fixed bid-ask spread of κ∗0, both measured as a fraction of the
value traded (with units of 10−4 equivalent to basis points). Equation (63) nests for
empirical testing both the linear model of equation (12) (z = 1) and the square root
model of equation (13) (z = 1/2).

First, we report estimates of the six parameters (βmkt, z, α1, κ
∗
0, α2, and κ

∗
I) in

equation (63) using non-linear regression. Second, we calibrate the three-parameter
linear impact model of equation (12) with parameters (βmkt, κ

∗
0, κ

∗
I) by imposing

the additional invariance restrictions α1 = α2 = −1/3 and the linear cost restriction
z = 1. Third, we also calibrate the three-parameter square root model of equation (13)
with parameters (βmkt, κ

∗
0, κ

∗
I) by imposing the alternate restriction z = 1/2. Finally,

we examine a twelve-parameter generalization of equation (63) which replaces powers
α1 and α2 of trading activity W with powers of volatility σ, price P , volume V , and
turnover η. Although statistical tests reject invariance, the results indicate that the
predictions of invariance are economically significant, with the square root version of
invariance explaining transactions costs better than the linear version.

The parameter estimates for the six parameters βmkt, κ
∗
0, z, α1, κ

∗
I , α2 in the

non-linear regression (63) are reported in table 4.
For the coefficient βmkt, which multiplies the market return Rmkt, the estimate is

β̂mkt = 0.65 with standard error 0.013. The fact that β̂mkt < 1 suggests that many
transition orders are executed early on the first day.16

The point estimate of the estimated bid-ask spread exponent is α̂1 = −0.49, with
standard error 0.050, three standard errors lower than the predicted value α1 = −1/3.
In comparison with invariance, this result implies higher spread costs for less actively
traded stocks and lower spread costs for more actively traded stocks. Note, however,
that the factor involving α1 is multiplied by 2·κ∗0, and κ∗0 is only of marginal statistical
significance since it differs from zero by about two standard errors; excluding the bid-
ask spread component of prices reduces the R2 from 0.1010 to 0.1006 (not reported
in table). This result may have something to do with the minimum tick size of one
cent being a binding constraint for some securities.

16The fact that β̂mkt = 0.65 is close to 2/3 is a coincidence; it is not implied by invariance.
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The point estimate for α2 is α̂2 = −0.32 with standard error 0.015. Since in-
variance implies α2 = −1/3, this result strongly supports invariance. When the four
parameters are estimated separately for NYSE Buys, NYSE Sells, NASDAQ Buys,
and NASDAQ Sells, the estimated coefficients for α2 are −0.40, −0.33, −0.41, and
−0.29, respectively.

The estimate for the market impact curvature parameter z is ẑ = 0.57 with
standard error 0.039. This suggests that a square root specification (z = 1/2) may
describe observed transactions costs better than a linear specification (z = 1). Note
that invariance does not place any restrictions on the parameter z itself.

The point estimate of the market impact coefficient κ∗I is κ̂∗I = 10.69 · 10−4 with
standard error 1.376 · 10−4. The estimates of κ∗I are higher for buy orders than for
sell orders (12.08 · 10−4 versus 9.56 · 10−4 for NYSE; 12.33 · 10−4 versus 9.34 · 10−4 for
NASDAQ).

Note that the point estimate of the market impact coefficient κ∗I is different from
zero with much greater statistical significance than the bid-ask spread coefficient κ∗0;
this is consistent with the interpretation that market impact costs are of considerably
greater economic importance than bid-ask spread costs.

Results for the five-parameter linear specification, regression equation (63) with
the parameter restriction z = 1 (linear impact), are reported in table 9 in the Ap-
pendix. The estimate of the bid-ask spread cost κ∗0 is 6.28 · 10−4 with standard error
0.890 · 10−4, and the estimate of the exponent α1 is α̂1 = −0.39 with standard error
0.020. The estimate of the market impact cost κ∗I is 2.73 · 10−4 with standard error
0.252. The estimate of the exponent α2 is α̂2 = −0.31 with standard error of 0.028;
thus, under the restriction of linear price impact (z = 1), the additional restriction
imposed by invariance (α2 = 1/3) is not statistically rejected.

Model Calibration. Next, we calibrate transaction cost models, under the as-
sumption of invariance and the assumption of either linear or square root specification
for the cost function.

Table 5 presents estimates for the three parameters βmkt, κ
∗
0, and κ∗I in equa-

tion (63), imposing the invariance restrictions α1 = α2 = −1/3 and also imposing
either a linear transactions cost model z = 1 or a square root model z = 1/2.

In the linear specification with z = 1, the point estimate for market impact cost
κ̂∗I is equal to 2.50 · 10−4, and the point estimate for bid-ask spread cost κ̂∗0 is equal
8.21 · 10−4.

In the square root specification with z = 1/2, the point estimate for market impact
cost κ̂∗I is equal to 12.08 · 10−4, and the point estimate for half bid-ask spread κ̂∗0 is
equal to 2.08 · 10−4.

For the benchmark stock, these estimates imply that the total cost of a hypothet-
ical trade of one percent of daily volume incurs a cost of about 10.71 basis points in
the linear model and 14.16 basis points in the square root model.

The benchmark stock would belong to volume group 7, and the corresponding
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average quoted spread in table 1 for that group is 12.04 basis points. The implied
spread estimate of about 16.42 basis points for the linear model is close to the quoted
spread; the implied spread estimate of 4.16 basis points for the square root model
may be biased downwards due to collinearity between the constant term and and the
square root term in the regression in the region close to zero.

Economic Interpretation. We examine the economic significance of our results
by comparing the R2 of different specifications for transaction costs models.

The R2 is equal to 0.0847 in the transaction cost regressions with market return
only (not reported). This implies that a substantial part of realized transaction costs
is explained by overall market dynamics. The transaction costs models improve the
R2s by only one or two percent.

A comparison of the R2s in table 4 and table 5 provides strong support for the in-
variance hypothesis. When the coefficient on W/W∗ is fixed at the invariance-implied
value of −1/3 and only two transactions cost parameters κ∗I and κ∗0 are estimated
(table 5), the R2 is 0.0991 for a linear specification and 0.1007 for a square root spec-
ification. The square root specification performs better than the linear specification.
Compared with the square root specification, adding the three additional parameters
α1, α2 and z modestly increases the R2 from 0.1007 to 0.1010 (table 5). The modest
increase strongly supports the economic importance of invariance.

We also consider a more general specification with eleven estimated coefficients.
The exponents on the three components of trading activity Wi (volatility σi, price
P0,i, volume Vi) as well as the exponent on the monthly turnover νi are allowed to
vary freely. The estimated regression equation is

IBS,i · Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
IBS,i · κ∗0 ·

[Wi

W ∗

]−1/3

·
σβ1

i · P β2

0,i · V
β3

i · νβ4

i

(0.02)(40)(106)(1/12)
+

+ IBS,i · κ∗I ·
[ ϕIi
0.01

]z
·
[Wi

W ∗

]−1/3

·
σβ5

i · P β6

0,i · V
β7

i · νβ8

i

(0.02)(40)(106)(1/12)
+ ϵ̃i. (64)

Because the exponents on the W -terms are set to be −1/3, the invariance hypothesis
predicts β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

Table 5 shows that despite increasing the number of estimated parameters from
four to eleven, the R2 in the aggregate regression increases from 0.1010 to only 0.1016.
The estimates of β1, β2, β3, β4, β5, β6, β7, and β8 are shown in table 11 in the
Appendix. The estimates of β1, β2, β3, β4 are often statistically significant, but
these explanatory variables are multiplied by statistically insignificant coefficient κ∗0.
Almost all estimates of β5, β6, β7, and β8 are statistically insignificant, both for the
pooled sample as well as the four sub-samples.

In all three specifications, separate regressions for NYSE Buys, NYSE Sells, NAS-
DAQ Buys, and NASDAQ Sells suggest that price impact costs are higher for buy
orders than for sell orders. This is consistent with the hypothesis, discussed Obizhaeva
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(2009), that the market believes that buy orders—in particular, buy orders in port-
folio transitions—contain more information than sell orders.

OLS Estimates for Quoted Spread. Finally, we present results of statistical
tests based on the data on quoted bid-ask spread for portfolio transition orders.

Since invariance implies that bid-ask spread costs are proportional to σ̄ · W̄−1/3,
intuition suggests that quoted spreads may also have this invariant property. As
a supplement to our empirical results on transactions costs, we test this prediction
using data on quoted spreads, supplied in the portfolio transition data as pre-trade
information for each transition order.

Let si denote the dollar quoted spread for order i. Applying equation (12) or (13)
to quoted spreads, we obtain

si/Pi ∝ σ̄i · W̄−1/3
i . (65)

Using equation (1) and equation (2), we can write the log-linear OLS regression

ln
[ si
Pi · σi

]
= ln s̄+ α3 · ln

[Wi

W ∗

]
+ ϵ̃i, (66)

where invariance implies α3 = −1/3. The constant term ln s̄ := ln[s∗/(40 · 0.02)] +
2/3 ln(ψ/ψ∗) − 1/3 ln(ζ∗/ζ) quantifies the dollar spread s∗ for the benchmark stock
as a fraction of dollar volatility P ∗ ·σ∗, under the identifying assumptions ζ = ζ∗ and
ψ = ψ∗.

Table 6 presents the regression results. The point estimate α̂3 = −0.35 has stan-
dard error 0.003. For sub-samples of NYSE Buys, NYSE Sells, NASDAQ Buys, and
NASDAQ Sells, the estimates are −0.31, −0.32, −0.40, and −0.39, respectively. Al-
though the hypothesis α3 = −1/3 is usually rejected statistically, the estimates are
economically close to the value of −1/3 predicted by invariance. The point estimate
of ln s̄ is equal to −3.07, implying a quoted spread of exp(−3.07) · 0.02 ≈ 9 · 10−4

for the benchmark stock. This number is similar to the median spread of 8.12 basis
points for volume group 7 in table 1.

It can be shown that an implicit spread proportional to σ̄ · W̄−1/3, as implied by
invariance, provides a better proxy for the actually incurred spread costs than the
quoted spread itself. When regression equation (63) is estimated with linear impact
z = 1, using only the 436,649 observations for which quoted bid-ask spread data is
supplied, we find the R2 is equal to 0.0992. Now replace the invariance-implied spread
cost proportional to σ̄ ·W̄−1/3 with the quoted half spread 1/2 ·si/Pi in equation (12).
The estimated equation is

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·h·

1

2
· si
P0,i

·(0.02)
σi

+IBS,i·κI ·
[ ϕIi
0.01

]
·
[Wi

W ∗

]α2

+ϵ̃i.

(67)
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We find that the R2 drops from 0.0992 to 0.0976 (table 10 in the Appendix). The
point estimate of the coefficient on the quoted half-spread coefficient is ĥ = 0.71. The
estimates are equal to 0.61, 0.74, 0.61, and 0.75, when estimated for NYSE Buys,
NYSE Sells, NASDAQ Buys, and NASDAQ Sells, respectively.

One interpretation of the estimate of 0.71 is that transition managers incur as a
transactions cost only 71% of the quoted half-spread. The values are consistent with
the intuition in Goettler, Parlour and Rajan (2005) that endogenously optimizing
traders capture a fraction of the bid-ask spread by mixing between market orders and
limit orders. Another interpretation is that noise in the quoted spread relative to the
“true” spread biases the coefficient towards zero and reduces the explanatory power
of the regression.

Bouchaud, Farmer and Lillo (2009) and Dufour and Engle (2000) report that
the quoted bid-ask spread is proportional to the standard deviation of percentage
returns between trades; this result is implied by microstructure invariance under the
assumption that the rate at which trades occur is proportional to the rate at which
bets arrive. Stoll (1978a) proposes a theory that the percentage dealer bid-ask spread
in NASDAQ stocks is proportional to variables including the dealer holding period
and the returns variance of the stock; this captures the spirit of invariance if the dealer
holding period is proportional to the rate at which bets arrive. Stoll (1978b) also tests
this theory using data on dealer spreads for NASDAQ stocks, and his estimates are
consistent with our findings as well.17

Discussion. Figure 6 plots the estimated coefficients for the 100 dummy variables,
along with their 95% confidence intervals, estimated from the dummy variable regres-
sion equation (62) by pooling the data across all 10 volume groups. The linear and
square root cost functions with parameters calibrated in table 5 are superimposed.
The linear specification is 2.50 · 10−4 · ϕI/0.01+ 8.21 · 10−4 (solid black line), and the
square root specification is 12.07 ·10−4 ·

√
ϕI/0.01+2.08 ·10−4 (solid grey line). Both

specifications result in estimates economically close to each other.
Consistent with the higher reported R2 for the square root model than the linear

model in table 5, the square root specification fits the data slightly better than the
linear specification, particularly for large orders in the order size bins from 90th to
99th percentiles. Consistent with our results, most studies find that total price impact
is best described by a concave function.18 For example, Almgren et al. (2005) obtain

17Stoll (1978b) reports an R2 of approximately 0.82 in an OLS regression of percentage bid-ask
spread on the logs of various variables including dollar volume, stock price, returns variance, turnover,
and number of dealers. Using the standard deviations and correlation matrix for the variables (p.
1165), it can be shown that imposing coefficients of −1/3 on dollar volume and +1/3 on returns
variance (to mimic the definition of 1/L), while imposing coefficients of zero on all other explanatory
variables except a constant term, results in an R2 equal to 0.66. This result is similar to our results
in table 6.

18Since we plot the log of order size on the horizontal axis but do not take the log of the transaction
cost on the vertical axis (to make standard errors have similar magnitudes for different observations),
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an estimate ẑ = 0.60 for their sample of almost 30, 000 U.S. stock orders executed
by Citigroup between 2001 and 2003; this is comparable to our estimate of ẑ = 0.56
when the constraint α1 = α2 = −1/3 is imposed in regression equation (63). To
differentiate temporary impact from permanent impact of earlier executed trades,
Almgren et al. (2005) assume a particular execution algorithm with a constant rate
of trading. We do not quantify these cost components separately but rather focus on
total costs.

Intuition might suggest that for gigantic orders, the square root model would
predict dramatically lower transactions costs than the linear model, making it easy
to distinguish the predictions of one model from the other. As the superimposed
estimated linear and square root cost functions for the ten plots in figure 5 make
clear, both specifications estimate similar transactions costs for the bin representing
the largest 1% or orders (because the graphs of the linear and square root functions
in figure 6 cross near the bin representing the largest 1% of orders). Furthermore, the
transaction cost dummy variable for the largest 1% of orders fits both the linear and
square root models well. For the largest 1% of orders in the highest volume group
in figure 5, the estimated dummy variable fits the higher cost estimates of the linear
model better than the square root model.

7 Implications

The invariance relationships (5), (6), (9), and (14) are like a structural model which
describes the implications of market microstructure for bet size, transactions costs,
efficiency and resiliency. The model is fully specified by constants describing the
moments of Ĩ and the shape of the un-modeled function CB(.), which determines
the constant C̄B. These constants can be inferred from the estimates in section 5
and section 6, but their economic interpretation depends on assumptions about the
volume multiplier ζ, the volatility multiplier ψ, and the deflator δ.

Our empirical tests provide not only evidence in favor of the invariance hypotheses
but also inputs for the calibration process. Our empirical results can be summarized as
follows. The distribution of portfolio transition orders |X̃|—expressed as a fraction
of volume—is approximately a log-normal. It is therefore fully described by two
parameters, the log-mean for the benchmark stock estimated to be −5.71 and the
log-variance estimated to be 2.53 (table 3). The following formula shows how these
estimates can be extrapolated to stocks with other levels of trading activity W =
σ · P · V and volume V :

ln
[ |X̃|
V

]
≈ −5.71− 2

3
· ln
[ W

(0.02)(40)(106)

]
+
√
2.53 · Z̃, Z̃ ∼ N(0, 1) (68)

both the linear model and the concave square root model show up as exponential functions; the graph
of the linear model is more convex than the graph of the square root model.
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γ = 85 ·
[ W

(0.02)(40)(106)

]2/3
. (69)

The last equation for the number of bets γ follows directly from equation (68) under
the assumption that the volume multiplier ζ = 2 and the portfolio transition size
multiplier δ = 1. These two equations fully describe the order flow process.

Our empirical results also suggest that transactions cost functions can be described
by either a linear model or a square root model. Since both models also have a
constant bid-ask spread term, each model is described by two parameters. For an
order of 1% of average daily volume in the benchmark stock, the estimates imply
market impact costs of κI = 2.50 · 10−4 and spread costs of κ0 = 8.21 · 10−4 for the
linear model as well as market impact costs of κI = 12.08 · 10−4 and spread costs of
κ0 = 2.08 · 10−4 for the square root model (table 5). The following formulas show
how these estimates can be extrapolated to execution costs of an order of X shares
for stocks with other levels of trading activity W , volume V , and volatility σ:

C(X) =
σ

0.02

(8.21
104

·
[

W

(0.02)(40)(106)

]−1/3

+
2.50

104
·
[

W

(0.02)(40)(106)

]1/3
X

(0.01)V

)
.

(70)

C(X) =
σ

0.02

(2.08
104

·
[

W

(0.02)(40)(106)

]−1/3

+
12.08

104
·
[ X

(0.01)V

]1/2)
. (71)

These two equations fully describe the transactions cost models.
To summarize, formulas (68), (69), (70), and (71) provide a simple way to calculate

the number of bets, different percentiles of bet sizes, and transactions costs. The only
stock-specific inputs required are expected dollar volume and volatility.19

Our results can also be used to calibrate the distribution of Ĩ and the invariant cost
function CB(·), which further implies specific quantitative relationships concerning
various market microstructure variables such as the number of bets per day, bet sizes,
spread, liquidity, pricing accuracy, and resiliency as functions of easily observable
trading activity and its components. These implications ultimately depend on values
assigned to the volatility multiplier ψ, the volume multiplier ζ, and the deflator δ.

In a more complicated exercise left for future research, this handful of parameters
would make it possible to triangulate the value of parameters measuring the fraction of
trading volume due to long-term investors rather than intermediaries 1/ζ, the fraction
of returns volatility generated by bets ψ, and the ratio of the size of bets to the size
of portfolio transition orders δ. In the future, careful thinking about calibration of

19If there is a concern that the volume multiplier ζ and the volatility multiplier ψ are different from
the ones relevant for our sample of portfolio transitions, then a simple adjustment to the formulas
must be implemented. First, one needs to deflate trading volume and trading volatility in those
formulas by appropriate multipliers in order to write those formulas in terms of betting volume and
betting volatility for observations in portfolio transitions data. Second, one needs to plug into the
modified formulas betting volume and betting volatility appropriate for the market, in the context
of which calculations are made.
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the invariants and estimation of multipliers will be necessary to sharpen predictions
based on invariance principles.

8 Conclusion

We have shown that the predictions based on market microstructure invariance are
economically consistent with results estimate from portfolio transitions data for U.S.
equities. We conjecture that predictions based on invariance may be found to hold in
other data as well, such as spread, quote, and transactions data in the TAQ dataset;
levels and changes in holdings recorded in 13-F filings of institutional investment man-
agers; institutional trades reported in the Ancerno dataset; and other datasets. For
example, we conjecture that data on news articles can help to show that information
flows take place in the same business time as trading.

We conjecture that predictions of market microstructure invariance may generalize
to other markets such as bond markets, currency markets, and futures markets, as
well as to other countries. Whether market microstructure invariance applies to other
markets poses an interesting set of issues for future research.

We do not expect invariance to hold perfectly across different markets and dif-
ferent times periods. Differences in trading institutions across markets might make
the volume multiplier and the volatility multiplier vary across markets. We expect
transactions costs, particularly bid-ask spread costs (but perhaps not market impact
costs), to be influenced by numerous institutional features, such as government regu-
lation (e.g., short sale restrictions, customer order handling rules), transactions taxes,
competitiveness of market making institutions, efficiency of trading platforms, market
fragmentation, technological change, and tick size. For example, if minimum tick size
rules affect bid-ask spread costs, we believe that market microstructure invariance
can be used as a benchmark against which the effect of tick size on bid-ask spread
costs can be evaluated.

To conclude, market microstructure invariance implies simple scaling laws which
lead to sharp statistical hypothesis about bet size and transaction costs; it is consistent
with a simple structural model from which specific versions of these scaling laws can
be derived in closed form; and its implications explain an economically significant
portion of the variation in portfolio transition order size and transaction costs when
the scaling laws are imposed on the data. The scaling laws enable us to derive simple
operational formulas describing order size distributions and transaction costs; thus,
they provide simple benchmarks from which past research can be evaluated and open
up new lines of research into market microstructure.
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Perold, André. 1988. “The Implementation Shortfall: Paper vs. Reality.” Journal
of Portfolio Management, 14(3): 4–9.

Plerou, Vasiliki, Parameswaran Gopikrishnan, Luis A. Amaral, Xavier
Gabaix, and Eugene H. Stanley. 2000. “Economic Fluctuations and Anomalous
Diffusion.” Physical Review E, 62: 3023–3026.

Schwarzkopf, Yonathan, and Doyne J. Farmer. 2010. “Empirical Study of the
Tails of Mutual Fund Size.” Physical Review E, 81: 066113.

Stambough, Robert F., and Lubos Pastor. 2003. “Liquidity Risk and Expected
Stock Returns.” Journal of Political Economy, 111: 642–685.

Stoll, Hans R. 1978a. “The supply of dealer services in securities markets.” The
Journal of Finance, 33(4): 1133–1151.

Stoll, Hans R. 1978b. “The pricing of security dealer services: An empirical study
of NASDAQ stocks.” The Journal of Finance, 33(4): 1153–1172.

Treynor, Jack. 1995. “The Only Game in Town.” The Financial Analysts Journal,
51(1): 81–83 (reprinted from The Financial Analysts Journal 22, 1971, 12–14, 22).

Wang, Jiang. 1993. “A Model of Intertemporal Asset Prices Under Asymmetric
Information.” The Review of Economic Studies, 60(2): 249–282.

57



T
ab

le
1:

D
es
cr
ip
ti
ve

S
ta
ti
st
ic
s.

pa
n
el

A
:
P
ro
pe
rt
ie
s
o
f
S
ec
u
ri
ti
es
.

A
ll

1
2

3
4

5
6

7
8

9
1
0

M
ed
(V

·P
)
×
10

6
18
.7
2

1.
13

5.
10

9.
9
2

1
5
.9
3

2
3
.8
7

3
1
.4
1

4
2
.1
2

6
0
.2
5

1
0
1
.6
0

2
1
2
.8
5

M
ed
(σ
)
×
10

2
1.
93

2.
16

2.
04

1.
9
4

1
.9
8

1
.9
0

1
.8
6

1
.8
0

1
.7
8

1
.7
7

1
.7
6

M
ed
(S
p
rd

)
×
10

4
12
.0
4

40
.9
6

18
.7
2

13
.7
0

1
2
.0
2

1
0
.3
2

9
.4
2

8
.1
2

7
.2
1

5
.9
2

4
.8
3

M
ed
(T
u
rn

)
×
10

2
12
.7
2

6.
58

12
.3
6

14
.8
0

1
5
.9
5

1
6
.8
0

1
6
.3
6

1
5
.3
7

1
4
.4
1

1
4
.9
2

1
1
.1
2

pa
n
el

B
:
P
ro
pe
rt
ie
s
o
f
P
o
rt
fo
li
o
T
ra
n
si
ti
o
n
s
O
rd
er
s.

A
ll

1
2

3
4

5
6

7
8

9
1
0

A
v
g(
X
/V

)
×
10

2
4.
20

16
.2
3

4.
54

2.
6
2

1
.8
3

1
.3
7

1
.1
8

1
.0
8

0
.8
8

0
.6
9

0
.4
9

M
ed
(X
/V

)
×
10

2
0.
57

3.
33

1.
36

0.
7
9

0
.5
3

0
.4
0

0
.3
4

0
.3
0

0
.2
5

0
.2
0

0
.1
4

A
v
g(
X
/C
a
p
)
×
10

4
1.
72

3.
55

2.
68

2.
0
4

1
.5
9

1
.2
6

1
.0
6

0
.9
1

0
.7
2

0
.5
6

0
.3
7

M
ed
(X
/C
a
p
)
×
10

4
0.
35

0.
98

0.
80

0.
5
8

0
.4
2

0
.3
2

0
.2
7

0
.2
3

0
.1
9

0
.1
5

0
.0
9

A
v
g
C
(X

)
×
10

4
16
.7
9

44
.9
5

21
.4
6

14
.5
3

1
2
.6
2

1
1
.7
0

5
.5
8

9
.2
7

3
.9
9

7
.3
7

6
.1
6

A
v
g
C
om

m
×
10

4
7.
43

1
4.
90

9.
30

7.
8
6

7
.0
0

6
.1
5

5
.4
9

4
.9
3

4
.3
4

3
.6
2

2
.6
8

A
v
g
S
E
C

fe
e
×
10

5
2.
90

3.
26

3.
02

3.
0
0

2
.8
5

2
.8
4

2
.7
6

2
.7
6

2
.7
3

2
.6
8

2
.5
6

#
O
b
s

43
9,
76
5

71
,0
00

68
,6
89

41
,2
3
8

4
9
,0
0
0

2
8
,0
7
3

2
9
,3
3
0

2
9
,7
7
8

3
4
,4
0
9

4
0
,6
4
0

4
7
,6
0
8

#
S
tk
s

2,
58
3

1,
10
8

48
6

22
4

1
8
2

1
0
6

1
2
6

9
0

1
0
2

8
1

7
8

T
ab

le
re
p
or
ts

th
e
ch
ar
ac
te
ri
st
ic
s
of

se
cu
ri
ti
es

an
d
tr
a
n
si
ti
o
n
o
rd
er
s.

P
a
n
el

A
sh
ow

s
th
e
m
ed
ia
n
av
er
a
g
e
d
a
il
y
d
o
ll
a
r

v
ol
u
m
e
(i
n
m
il
li
on

s
of

$)
,
th
e
m
ed
ia
n
d
ai
ly

v
ol
at
il
it
y
(i
n
p
er
ce
n
ts
),
th
e
m
ed
ia
n
p
er
ce
n
ta
g
e
sp
re
a
d
(i
n
b
a
si
s
p
o
in
ts
),
th
e

m
ed
ia
n
m
on

th
ly

tu
rn
ov
er

ra
te

(i
n
p
er
ce
n
ts
).

p
an

el
B

sh
ow

s
th
e
av
er
a
g
e
a
n
d
m
ed
ia
n
o
rd
er

si
ze

(i
n
p
er
ce
n
ts

o
f
d
a
il
y

v
ol
u
m
e
an

d
in

b
as
is
p
oi
n
ts

of
m
a
rk
et

ca
p
it
al
iz
at
io
n
)
a
s
w
el
l
a
s
av
er
a
g
e
im

p
le
m
en
ta
ti
o
n
sh
o
rt
fa
ll
(i
n
b
a
si
s
p
o
in
ts
),
th
e

av
er
ag
e
co
m
m
is
si
on

(i
n
b
as
is

p
oi
n
ts
),

an
d
th
e
av
er
ag

e
S
E
C

fe
e
fo
r
se
ll
o
rd
er
s
(i
n
p
er
ce
n
ts

p
er

1
0
b
a
si
s
p
o
in
ts
).

T
h
e

th
re
sh
ol
d
s
of

te
n
v
ol
u
m
e
gr
ou

p
s
co
rr
es
p
on

d
to

30
th
,
5
0
th
,
6
0
th
,
7
0
th
,
7
5
th
,
8
0
th
,
8
5
th
,
9
0
th
,
a
n
d
9
5
th

p
er
ce
n
ti
le
s

of
d
ol
la
r
v
ol
u
m
e
fo
r
co
m
m
on

st
o
ck
s
li
st
ed

on
th
e
N
Y
S
E
.
G
ro
u
p
1
(G

ro
u
p
1
0
)
co
n
ta
in
s
o
rd
er
s
in

st
o
ck
s
w
it
h
lo
w
es
t

(h
ig
h
es
t)

d
ol
la
r
tr
ad

in
g
v
ol
u
m
e.

T
h
e
sa
m
p
le

ra
n
ge
s
fr
o
m

J
a
n
u
a
ry

2
0
0
1
to

D
ec
em

b
er

2
0
0
5
.

58



Table 2: OLS Estimates of Order Size.

NYSE NASDAQ

All Buy Sell Buy Sell

ln
[
q̄
]

-5.67 -5.68 -5.63 -5.75 -5.65
(0.017) (0.023) (0.018) (0.035) (0.032)

α0 -0.62 -0.63 -0.59 -0.71 -0.59
(0.009) (0.011) (0.008) (0.019) (0.015)

R2 0.3167 0.2587 0.2646 0.4298 0.3542
Q∗/V ∗ · δ−1 × 10−4 34.62 34.14 35.98 31.80 34.78

#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates ln q̄ and α0 for the regression:

ln
[Xi

Vi

]
= ln

[
q̄
]
+ α0 · ln

[Wi

W ∗

]
+ ϵ̃i.

Each observation corresponds to transition order i with order size Xi, bench-
mark price P0,i, expected daily volume Vi, expected daily volatility σi, trading
activity Wi. q̄ is the measure of order size such that Q∗/V ∗ measures the me-
dian order size for a benchmark stock. The benchmark stock has daily volatility
of 2%, share price of $40, and daily volume of one million shares. The standard
errors are clustered at weekly levels for 17 industries and shown in parentheses.
The sample ranges from January 2001 to December 2005.
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Table 3: OLS Estimates for Order Size: Model Calibration.

NYSE NASDAQ

All Buy Sell Buy Sell

Restricted Specification: α0 = −2/3, b1 = b2 = b3 = b4 = 0

ln
[
q̄
]

-5.71 -5.70 -5.68 -5.70 -5.77
(0.019) (0.023) (0.019) (0.042) (0.039)

Q∗/V ∗ · δ−1 × 10−4 33.13 33.46 34.14 33.46 31.20
MSE 2.53 2.61 2.54 2.32 2.56
R2 0.3149 0.2578 0.2599 0.4278 0.3479

Unrestricted Specification With 5 Degrees of Freedom: α0 = −2/3.

R2 0.3229 0.2668 0.2739 0.4318 0.3616

#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates ln q̄ and the mean squared error (MSE) for the
regression:

ln
[Xi

Vi

]
= ln

[
q̄
]
+α0·ln

[Wi

W ∗

]
+b1·ln

[ σi
0.02

]
+b2·ln

[P0,i

40

]
+b3·ln

[ Vi
106

]
+b4·ln

[ νi
1/12)

]
+ϵ̃i.

with α0 restricted to be −2/3 as predicted by invariance hypothesis and b1 =
b2 = b3 = 0. Each observation corresponds to transition order i with order size
Xi, benchmark price P0,i, expected daily volume Vi, expected daily volatility
σi, trading activityWi, and monthly turnover rate νi. q̄ is the measure of order
size such that Q∗/V ∗ measures the corresponding percentile of order size for
a benchmark stock. The benchmark stock has daily volatility of 2%, share
price of $40, and daily volume of one million shares. The R2s are reported
for restricted specification with α0 = −2/3, b1 = b2 = b3 = b4 = 0 as well as
for unrestricted specification with coefficients ln q̄ and b1, b2, b3, b4 allowed to
vary freely. The standard errors are clustered at weekly levels for 17 industries
and shown in parentheses. The sample ranges from January 2001 to December
2005.
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Table 4: Transactions Cost Estimates in Non-Linear Regression.

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0.66 0.63 0.62 0.76 0.78
(0.013) (0.016) (0.016) (0.037) (0.036)

κ∗0 × 104 1.77 -0.27 1.14 0.77 3.55
(0.837) (2.422) (1.245) (4.442) (1.415)

α1 -0.49 -0.37 -0.50 0.53 -0.44
(0.050) (1.471) (0.114) (1.926) (0.045)

κ∗I × 104 10.69 12.08 9.56 12.33 9.34
(1.376) (2.693) (2.254) (2.356) (2.686)

z 0.57 0.54 0.56 0.44 0.63
(0.039) (0.056) (0.062) (0.051) (0.086)

α2 -0.32 -0.40 -0.33 -0.41 -0.29
(0.015) (0.037) (0.029) (0.035) (0.037)

R2 0.1010 0.1118 0.1029 0.0945 0.0919
#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates for βmkt, z, α1, κ
∗
0, α2, and κ

∗
I in the regression:

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·κ∗0·

[Wi

W ∗

]α1

+IBS,i·κ∗I ·
[Wi

W ∗

]α2

·
[ ϕIi
0.01

]z
+ϵ̃i.

(72)
where ϕIi/0.01 = Xi/(0.01Vi) · (Wi/W

∗)2/3. Si is implementation shortfall.
Rmkt is the value-weight market return for the first day of transition. The
trading activity Wi is the product of expected volatility σi, benchmark price
P0,i, and expected volume Vi. The scaling constantW ∗ = (0.02)(40)(106) is the
trading activity for the benchmark stock with volatility of 2% per day, price
$40 per share, and trading volume of one million shares per day. Xi is the
number of shares in the order i. κ∗I is the market impact costs of executing
a trade of one percent of daily volume in a benchmark stock, and κ∗0 is the
effective spread cost. The standard errors are clustered at weekly levels for 17
industries and shown in parentheses. The sample ranges from January 2001 to
December 2005.
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Table 5: Transactions Costs: Model Calibration.

NYSE NASDAQ

All Buy Sell Buy Sell

Linear Model: z = 1, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

κ∗0 × 104 8.21 7.19 6.77 9.18 9.27
(0.578) (1.122) (0.794) (1.563) (0.781)

κ∗I × 104 2.50 3.37 1.92 3.46 2.46
(0.190) (0.370) (0.265) (0.395) (0.327)

R2 0.0991 0.1102 0.1012 0.0926 0.0897

Square Root Model: z = 1/2, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

κ∗0 × 104 2.08 -1.31 0.92 2.28 4.65
(0.704) (1.278) (0.926) (2.055) (0.824)

κ∗I × 104 12.08 15.65 11.10 13.50 10.41
(0.742) (1.218) (1.298) (1.456) (1.207)

R2 0.1007 0.1116 0.1027 0.0941 0.0911

Unrestricted Specification With 12 Degrees of Freedom.

R2 0.1016 0.1121 0.1032 0.0957 0.0944

#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates κ∗0 and κ∗I for the regression:

IBS,i · Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
IBS,i · κ∗0 ·

[Wi

W ∗

]−1/3
·
σβ1
i · P β2

0,i · V
β3
i · νβ4

i

(0.02)(40)(106)(1/12)
+

+ IBS,i · κ∗I ·
[ ϕIi
0.01

]z
·
[Wi

W ∗

]−1/3
·
σβ5
i · P β6

0,i · V
β7
i · νβ8

i

(0.02)(40)(106)(1/12)
+ ϵ̃i.

where invariant ϕIi/0.01 = Xi/(0.01Vi) · (Wi/W
∗)2/3. Si is implementation

shortfall. Rmkt is the value-weight market return for the first day of transition.
The trading activityWi is the product of expected volatility σi, benchmark price
P0,i, and expected volume Vi. The scaling constantW ∗ = (0.02)(40)(106) is the
trading activity for the benchmark stock with volatility of 2% per day, price $40
per share, and trading volume of one million shares per day. Xi is the number
of shares in the order i. κ∗I is the market impact costs of executing a trade of
one percent of daily volume in a benchmark stock, and κ∗0 is the effective spread
cost. The R2s are reported for restricted specification as well as for unrestricted
specification with twelve coefficients βmkt, z, κ

∗
I , κ

∗
0, β1, β2, β3, β4, β5, β6, β7, β8

allowed to vary freely. The standard errors are clustered at weekly levels for 17
industries and shown in parentheses. The sample ranges from January 2001 to
December 2005.
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Table 6: OLS Estimates of Log of Quoted Spread.

NYSE NASDAQ

All Buy Sell Buy Sell

ln s̄ -3.07 -3.09 -3.08 -3.04 -3.04
(0.008) (0.008) (0.008) (0.013) (0.012)

α3 -0.35 -0.31 -0.32 -0.40 -0.39
(0.003) (0.003) (0.003) (0.004) (0.004)

R2 0.4744 0.3545 0.3964 0.5516 0.5721
eln s̄ · 0.02× 104 9.28 9.10 9.19 9.57 9.57

#Obs 434,920 130,700 149,197 68,833 86,190

Table presents the estimates ln s̄ and α3 for the regression:

ln
[ si
Pi · σi

]
= ln s̄+ α3 · ln

[Wi

W ∗

]
+ ϵ̃i,

Each observation corresponds to order i. The left-hand side variable is the
logarithm of the quoted bid-ask spread si/P0,i as a fraction of expected return
volatility σi. The trading activity Wi is the product of expected daily volatility
σi, benchmark price P0,i, and expected daily volume Vi, measured as the last
month’s average daily volume. The scaling constant W ∗ = (0.02)(40)(106)
corresponds to the trading activity for the benchmark stock with volatility of
2% per day, price $40 per share, and trading volume of one million shares per
day. The median percentage spread for a benchmark stock is exp(ln s̄) · 0.02.
The standard errors are clustered at weekly levels for 17 industries and shown
in parentheses. The sample ranges from January 2001 to December 2005.
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Figure 4: Order Size and Trading Activity.

The figure plots ln(Xi/Vi) on the vertical axis against ln(Wi/W
∗) on the

horizontal axis, where Xi is portfolio transition order size in shares, Vi is
average daily volume in shares, andWi = Pi ·Vi ·σi is trading activity. The
fitted line is ln(Xi/Vi) = −5.705 − 2/3 · ln(Wi/W

∗), where the intercept
is estimated from an OLS regression with the slope fixed at −2/3. There
are 400,000+ data points from January 2001 to December 2005.
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Figure 6: Transactions Cost Functions.
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Figure shows estimates of transactions cost functions based on entire sam-
ple. On the horizonal axis, there are 100 equally spaced bins based on

re-scaled order sizes, ϕI = X̃/V ·
(
Wi/W

∗
)2/3

. The plot contains 100

estimates f∗(k, h)/L∗, h = 1, . . . , 100 from the regression

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·

[Wi

W ∗

]−1/3

·
100∑
h=1

D∗
i (k, h)·f∗(k, h)/L∗+ϵ̃i.

Xi is an order size in shares, Vi is the average daily volume in shares,
and Wi is the measure of trading activity. The vertical axis presents
estimated transactions cost invariant f ∗(.)/L in basis points. The 95th
percent confidence interval are superimposed (dotted lines). A linear func-
tion is 2.50 · 10−4 · ϕI/0.01 + 8.21 · 10−4 (black solid line). A square root
function is 12.07 · 10−4 ·

√
ϕI/0.01 + 2.08 · 10−4 (grey solid line). The

sample ranges from January 2001 to December 2005.
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Table 7: Quantile Estimates of Order Size.

p1 p5 p25 p50 p75 p95 p99

ln
[
q̄
]

-9.37 -8.31 -6.73 -5.66 -4.59 -3.05 -2.05
(0.008) (0.006) (0.004) (0.003) (0.004) (0.006) (0.009)

α0 -0.65 -0.64 -0.61 -0.62 -0.61 -0.64 -0.63
(0.005) (0.003) (0.002) (0.002) (0.002) (0.003) (0.005)

Pseudo R2 0.1621 0.1534 0.1650 0.1727 0.1795 0.1949 0.2232
Q∗/V ∗ · δ × 10−4 0.85 2.46 11.95 34.83 101.53 473.59 1287.35

#Obs 439,765 439,765 439,765 439,765 439,765 439,765 439,765

Table presents the estimates ln q̄ and α0 for the quantile regression:

ln
[Xi

Vi

]
= ln

[
q̄
]
+ α0 · ln

[Wi

W ∗

]
+ ϵ̃i.

Each observation corresponds to transition order i with order size Xi, bench-
mark price P0,i, expected daily volume Vi, expected daily volatility σi, trading
activityWi. q̄ is the measure of order size such that Q∗/V ∗ measures the corre-
sponding percentile of order size for a benchmark stock. The benchmark stock
has daily volatility of 2%, share price of $40, and daily volume of one million
shares. The standard errors are shown in parentheses. The sample ranges from
January 2001 to December 2005.
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Table 8: OLS Estimates for Order Size: Model Calibration.

NYSE NASDAQ

All Buy Sell Buy Sell

Restricted Specification: α0 = −2/3, b1 = b2 = b3 = b4 = 0

ln
[
q̄
]

-5.71 -5.70 -5.68 -5.70 -5.77
(0.019) (0.023) (0.019) (0.042) (0.039)

Q∗/V ∗ · δ × 104 33.13 33.46 34.14 33.46 31.20
MSE 2.53 2.61 2.54 2.32 2.56
R2 0.3149 0.2578 0.2599 0.4278 0.3479

Unrestricted Specification With 5 Degrees of Freedom: α0 = −2/3.

ln
[
q̄
]

-5.53 -5.55 -5.48 -5.77 -5.48
(0.019) (0.026) (0.019) (0.051) (0.047)

b1 0.42 0.47 0.53 0.19 0.33
(0.040) (0.050) (0.043) (0.094) (0.087)

b2 0.24 0.17 0.29 0.04 0.33
(0.019) (0.021) (0.017) (0.049) (0.040)

b3 0.06 0.06 0.07 -0.06 0.07
(0.010) (0.012) (0.009) (0.026) (0.021)

b4 -0.18 -0.24 -0.22 -0.02 -0.11
(0.015) (0.020) (0.017) (0.040) (0.032)

R2 0.3229 0.2668 0.2739 0.4318 0.3616

#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates and the mean squared error (MSE) for the regres-
sion:

ln
[Xi

Vi

]
= ln

[
q̄
]
+α0·ln

[Wi

W ∗

]
+b1·ln

[ σi
0.02

]
+b2·ln

[P0,i

40

]
+b3·ln

[ Vi
106

]
+b4·ln

[ νi
1/12)

]
+ϵ̃i.

with α0 restricted to be −2/3 as predicted by invariance hypothesis and b1 =
b2 = b3 = 0. Each observation corresponds to transition order i with order size
Xi, benchmark price P0,i, expected daily volume Vi, expected daily volatility
σi, trading activityWi, and monthly turnover rate νi. q̄ is the measure of order
size such that Q∗/V ∗ measures the corresponding percentile of order size for
a benchmark stock. The benchmark stock has daily volatility of 2%, share
price of $40, and daily volume of one million shares. The R2s are reported
for restricted specification with α0 = −2/3, b1 = b2 = b3 = b4 = 0 as well as
for unrestricted specification with coefficients ln q̄ and b1, b2, b3, b4 allowed to
vary freely. The standard errors are clustered at weekly levels for 17 industries
and shown in parentheses. The sample ranges from January 2001 to December
2005.
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Table 9: Transactions Cost Estimates in Non-Linear Regression with Linear Impact.

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0.66 0.63 0.62 0.77 0.77
(0.013) (0.016) (0.016) (0.037) (0.036)

κ∗0 × 104 6.28 6.51 5.43 5.94 6.54
(0.890) (1.600) (1.154) (2.147) (1.501)

α1 -0.40 -0.36 -0.39 -0.44 -0.40
(0.020) (0.048) (0.029) (0.051) (0.031)

κ∗I × 104 2.73 2.63 2.10 3.69 3.13
(0.252) (0.460) (0.346) (0.663) (0.765)

α2 -0.31 -0.45 -0.31 -0.32 -0.28
(0.028) (0.038) (0.041) (0.056) (0.058)

R2 0.0993 0.1105 0.1014 0.0931 0.0901
#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates for βmkt, α1, κ
∗
0, α2, and κ

∗
I in the regression:

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·κ∗0·

[Wi

W ∗

]α1

+IBS,i·κ∗I ·
[Wi

W ∗

]α2

·
[ ϕIi
0.01

]z
+ϵ̃i.

(73)
where z = 1 and ϕIi/0.01 = Xi/(0.01Vi) · (Wi/W

∗)2/3. Si is implementation
shortfall. Rmkt is the value-weight market return for the first day of transition.
The trading activity Wi is the product of expected volatility σi, benchmark
price P0,i, and expected volume Vi. The scaling constant W ∗ = (0.02)(40)(106)
is the trading activity for the benchmark stock with volatility of 2% per day,
price $40 per share, and trading volume of one million shares per day. Xi is
the number of shares in the order i. κ∗I is the market impact costs of executing
a trade of one percent of daily volume in a benchmark stock, and κ∗0 is the
effective spread cost. The standard errors are clustered at weekly levels for 17
industries and shown in parentheses. The sample ranges from January 2001 to
December 2005.
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Table 10: Transactions Cost Estimates in Non-Linear Regression with Quoted Spread.

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0.65 0.63 0.62 0.76 0.77
(0.013) (0.016) (0.015) (0.036) (0.037)

κI × 104 2.95 2.97 2.24 3.76 2.95
(0.261) (0.504) (0.366) (0.700) (0.749)

α2 -0.32 -0.44 -0.32 -0.37 -0.33
(0.029) (0.036) (0.039) (0.053) (0.060)

h 0.71 0.61 0.74 0.61 0.75
(0.053) (0.110) (0.094) (0.127) (0.073)

R2 0.0976 0.1094 0.1010 0.0891 0.0872

#Obs 436,649 131,100 149,600 69,218 86,731

Table presents the estimates for βmkt, κI , α2, and h in the regression:

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·h·

1

2
· si
P0,i

·(0.02)
σi

+IBS,i·κI ·
[ ϕIi
0.01

]
·
[Wi

W ∗

]α2

+ϵ̃i.

where invariant Ii = Xi
(0.01)Vi

·
[
Wi
W ∗

]2/3
. Each observation corresponds to or-

der i. IBS,i is a buy/sell indicator, Si is implementation shortfall, Rmkt is the
value-weight market return for the first day of transition. The term (0.02)/σi
adjusts for heteroscedasticity. The trading activity Wi is the product of ex-
pected volatility σi, benchmark price P0,i, and expected volume Vi. The scaling
constant W ∗ = (0.02)(40)(106) is the trading activity for the benchmark stock
with volatility of 2% per day, price $40 per share, and trading volume of one
million shares per day. Xi is the number of shares in the order i. κI is the
market impact costs of executing a trade of one percent of daily volume in a
benchmark stock. si/P0,i is the quoted spread. The standard errors are clus-
tered at weekly levels for 17 industries and shown in parentheses. The sample
ranges from January 2001 to December 2005.
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Table 11: Transactions Costs: Model Calibration.

NYSE NASDAQ

All Buy Sell Buy Sell

Linear Model: z = 1, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

βmkt 0.6571 0.6308 0.6195 0.7693 0.7771
(0.0135) (0.0159) (0.0158) (0.0371) (0.0365)

κ0 × 104 8.2134 7.1934 6.7698 9.1832 9.2658
(0.5776) (1.1215) (0.7943) (1.5627) (0.7811)

κI × 104 2.5003 3.3663 1.9220 3.4614 2.4629
(0.1903) (0.3700) (0.2650) (0.3953) (0.3267)

R2 0.0991 0.1102 0.1012 0.0926 0.0897

Square Root Model: z = 1/2, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

βmkt 0.6552 0.6285 0.6192 0.7598 0.7782
(0.0134) (0.0158) (0.0159) (0.0365) (0.0364)

κ0 × 104 2.0763 -1.3091 0.9167 2.2844 4.6530
(0.7035) (1.2779) (0.9264) (2.0554) (0.8244)

κI × 104 12.0787 15.6544 11.0986 13.5025 10.4063
(0.7416) (1.2177) (1.2979) (1.4564) (1.2069)

R2 0.1007 0.1116 0.1027 0.0941 0.0911

Unrestricted Specification With 12 Degrees of Freedom.

βmkt 0.66 0.63 0.62 0.76 0.78
(0.013) (0.016) (0.015) (0.036) (0.036)

κ∗0 × 104 0.94 -0.05 0.47 1.55 1.61
(0.675) (0.124) (0.556) (1.698) (1.148)

β1 -0.43 -2.47 -1.08 -0.44 -0.46
(0.147) (0.890) (0.392) (0.489) (0.131)

β2 0.17 2.87 0.23 0.20 0.11
(0.072) (1.230) (0.231) (0.127) (0.109)

β3 -0.56 1.85 -0.47 -0.47 -0.49
(0.159) (0.754) (0.296) (0.238) (0.155)

β4 0.62 0.13 0.49 0.49 0.58
(0.173) (0.620) (0.490) (0.313) (0.175)

κ∗I × 104 9.36 11.61 10.93 8.88 5.00
(1.307) (2.471) (1.804) (3.340) (2.033)

z 0.58 0.54 0.52 0.58 0.63
(0.041) (0.039) (0.042) (0.094) (0.083)

β5 0.02 -0.11 0.36 -0.17 -0.23
(0.135) (0.192) (0.229) (0.252) (0.242)

β6 -0.14 -0.11 0.03 -0.27* -0.22
(0.061) (0.113) (0.100) (0.120) (0.113)

β7 0.01 -0.07 0.04 0.00 -0.16
(0.037) (0.050) (0.052) (0.099) (0.100)

β8 0.08 0.07 -0.11 0.08 0.39
(0.067) (0.086) (0.101) (0.143) (0.153)

R2 0.1016 0.1121 0.1032 0.0957 0.0944

#Obs 439,765 131,530 150,377 69,871 87,987
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Table presents the estimates for the regression:

IBS,i · Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
IBS,i · κ∗0 ·

[Wi

W ∗

]−1/3
·
σβ1
i · P β2

0,i · V
β3
i · νβ4

i

(0.02)(40)(106)(1/12)
+

+ IBS,i · κ∗I ·
[ ϕIi
0.01

]z
·
[Wi

W ∗

]−1/3
·
σβ5
i · P β6

0,i · V
β7
i · νβ8

i

(0.02)(40)(106)(1/12)
+ ϵ̃i.

where ϕIi/0.01 = Xi/(0.01Vi) · (Wi/W
∗)2/3. Si is implementation shortfall.

Rmkt is the value-weight market return for the first day of transition. The
trading activity Wi is the product of expected volatility σi, benchmark price
P0,i, and expected volume Vi. The scaling constantW ∗ = (0.02)(40)(106) is the
trading activity for the benchmark stock with volatility of 2% per day, price $40
per share, and trading volume of one million shares per day. Xi is the number
of shares in the order i. κ∗I is the market impact costs of executing a trade of
one percent of daily volume in a benchmark stock, and κ∗0 is the effective spread
cost. The R2s are reported for restricted specification as well as for unrestricted
specification with twelve coefficients βmkt, z, κ

∗
I , κ

∗
0, β1, β2, β3, β4, β5, β6, β7, β8

allowed to vary freely. The standard errors are clustered at weekly levels for 17
industries and shown in parentheses. The sample ranges from January 2001 to
December 2005.
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