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Overview

Our goal is to explain how order size, order frequency, market
efficiency and trading costs vary across time and stocks.

• We propose market microstructure invariance that
generates predictions concerning variations of these variables.

• We develop a meta-model suggesting that invariance is
ultimately related to granularity of information flow.

• Invariance relationships are tested using a data set of portfolio
transitions and find a strong support in the data.

• Invariance implies simple formulas for order size, order
frequency, market efficiency, market impact, and bid-ask
spread as functions of observable volume and volatility.

Pete Kyle and Anna Obizhaeva Market Microstructure Invariance 2/100



Preview of Results: Bet Sizes

Our estimates imply that bets |X̃ |/V are approximately distributed
as a log-normal with the log-variance of 2.53 and the number of
bets per day γ is defined as (W = V · P · σ),
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For a benchmark stock, there are 85 bets with the median size of
0.33% of daily volume. Buys and sells are symmetric.
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Preview of Results: Transaction Costs

Our estimates imply two simple formulas for expected trading costs
for any order of X shares and for any security. The linear and
square-root specifications are:
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A Structural Model

We outline a dynamic infinite-horizon model of trading, from which
various invariance relationships are derived results.

• Informed traders face given costs of acquiring information of
given precision, then place informed bets which incorporate a
given fraction of the information into prices.

• Noise traders place bets which turn over a constant fraction
of the stocks float, mimicking the size distribution of bets
placed by informed trades.

• Market makers offer a residual demand curve of constant
slope, lose money from being “run over” by informed bets,
but make up the losses from trading costs imposed on
informed and noise traders.
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Fundamental Value

• The unobserved “fundamental value” of the asset follows an
exponential martingale:

F (t) := exp[σF · B(t)− 1
2 · σ

2
F · t],

where B(t) follows standardized Brownian motion with
var{B(t +∆t)− B(t)} = ∆t. F (t) follows a martingale.
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Market Prices

• The price changes as informed traders and noise traders arrive
in the market and anonymously place bets.

• Risk neutral market makers set the market price P(t) as the
conditional expectation of the fundamental value F (t) given a
history of the “bet flow”.

• B̄(t) is the market’s conditional expectation of B(t) based on
observing the history of prices; the error B(t)− B̄(t) has a
normal distribution with variance denoted Σ(t)/σ2

F .

• The price is the best estimate of fundamental value; the price
has a martingale property:

P(t) = exp[σF · B̄(t) + 1
2 · Σ(t)− 1

2 · σ
2
F · t].
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Pricing Accuracy

• Pricing accuracy is defined as Σ(t) = var{log[F (t)/P(t)]};
market is more efficient when Σ1/2 is smaller.

• Σ−1/2 is Fischer Black’s measure of market efficiency: He
conjectures “almost all markets are efficient” in the sense that

“price is within a factor 2 of value” at least 90% of the time.
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Pricing Accuracy - Intuition

+ sigma= + sigmaF

- sigma= - sigmaF

FUNDAMETALS

PRICE

time

• Pricing accuracy is defined as Σ(t) = var{log[F (t)/P(t)]};
the market is more efficient when Σ1/2 is smaller.

• Fama says a market is “efficient” if all information is
appropriately reflected in price (prices follow a martingale),
even if very little information is available and prices are not
very accurate, i.e., Σ1/2 is large.
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Pricing Accuracy

• Σ−1/2 is Fischer Black’s measure of market efficiency: He
conjectures “almost all markets are efficient” in the sense that

“price is within a factor 2 of value” at least 90% of the time.

In mathematical terms, Σ1/2 = ln(2)/1.64 = 0.42.

• In time units, Σ/σ2 is the number of years by which the
informational content of prices lags behind fundamental value,
e.g., if σ = 0.35 and Σ1/2 = ln(2)/1.64, then prices are about
(ln(2)/1.64)2/0.352 ≈ 1.50 years “behind” fundamental value.
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Informed Traders

• Informed traders arrive randomly in the market at rate γI (t).

• Each informed trader observes one private signal ĩ(t) and
places one and only one bet, which is executed by trading
with market makers.

ĩ(t) := τ1/2 · Σ(t)−1/2 · σF · [B(t)− B̄(t)] + Z̃I (t),

where τ measures the precision of the signal and
Z̃I (t) ∼ N(0, 1). var{̃i(t)} = 1 + τ ≈ 1.
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Informed Traders

• An informed trader updates his estimate of B(t) from B̄(t) to
B̄(t) + ∆B̄I (t). Assuming τ is small,

∆B̄I (t) ≈ τ1/2 · Σ(t)1/2/σF · ĩ(t).

• If the signal value were to be fully incorporated into prices,
then the dollar price change would be equal to

E{F (t)− P(t) |∆B̄I (t)} ≈ P(t) · σF ·∆B̄I (t).

• Only a fraction θ of the “fully revealing” impact is
incorporated into prices (λ(t) is price impact), i.e.,

Q̃(t) = θ · λ(t)−1 · P(t) · σF ·∆B̄I (t).
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Profits of Informed Traders

• An informed trader’s expected “paper trading” profits are

π̄I (t) := E{[F (t)−P(t)]·Q̃(t)} = θ · P(t)2 · σ2
F · E{∆B̄I (t)

2}
λ(t)

.

• His expected profits net of costs conditional on ∆B̄I (t) are

E{[F (t)−P(t)]·Q̃(t)−λ(t)Q̃(t)2} = θ(1− θ)P(t)2σ2
F ·∆B̄I (t)

2

λ(t)
.

• θ = 1/2 maximizes the expected profits of the risk-neutral
informed trader. We assume 0 < θ < 1 to accommodate
possibility of informed traders being risk averse and
information can be leaked.
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Noise Traders

• Noise traders arrive at an endogenously determined rate γU(t).

• Each noise trader places one bet which mimics the size
distribution of an informed bet, even though it contains no
information, i.e., ĩ(t) = Z̃U(t) ∼ N(0, 1 + τ) ≈ N(0, 1).

• Noise traders turn over a constant fraction η of shares
outstanding N. The expected share volume V (t) and total
number of bets per day γ(t) := γI (t) + γU(t) satisfy

γU(t) · E{|Q̃(t)|} = η · N, γ(t) · E{|Q̃(t)|} = V (t).
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Transaction Costs

• Both informed traders and noise traders incur transactions
costs. The unconditional expected costs are

C̄B(t) := λ(t) · E{Q̃(t)2} = θ2 · P(t)2 · σ2
F · E{∆B̄(t)2}
λ(t)

.

• Illiquidity 1/L(t) is defined as the expected cost of executing a
bet in basis points:

1/L(t) := C̄B(t)/E{|P(t) · Q̃(t)|}.
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Break-Even Conditions - Intuition
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There is price continuation after an informed trade and mean
reversion after a noise trade. The losses on trading with informed
traders are equal to total gains on trading with noise traders,
γI · (π̄I − C̄B) = γU · C̄B .

Pete Kyle and Anna Obizhaeva Market Microstructure Invariance 34/100



Break-Even Condition For Market Maker

• The equilibrium level of costs must allow market makers to
break even.

• The expected dollar price impact costs that market makers
expect to collect from all traders must be equal to the
expected dollar paper trading profits of informed traders:

(γI (t) + γU(t)) · C̄B(t) = γI · π̄I (t).
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Break-Even Condition for Informed Traders

• The break-even condition for informed traders yields the rate
at which informed traders place bets γI (t).

• The expected paper trading profits from trading on a signal
π̄I (t) must equal the sum of expected transaction costs C̄B(t)
and the exogenously constant cost of acquiring private
information denoted cI :

π̄I (t) = C̄B(t) + cI .
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Market Makers and Market Efficiency

• Zero-profit, risk neutral, competitive market makers set prices
such that the price impact of anonymous trades reveals on
average the information in the order flow. The average impact
of a bet must satisfy

λ(t) · Q̃(t) =
γI (t)

γI (t) + γU(t)
·λ(t) · Q̃(t) · 1

θ
+

γU(t)

γI (t) + γU(t)
·0.

• The ratio of informed traders to noise traders then turns out
to be equal to the exogenous constant θ. The turnover rate is
constant.

γI (t)

γI (t) + γU(t)
= θ, V = η · N/(1− θ).
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Diffusion Approximation

• As a result of each bet, market makers update their estimate
of B̄(t) by ∆B̄(t).

• A trade is informed with probability θ and, if informed,
incorporates a fraction θ of its information content into prices,
leading to an adjustment in B̄(t) of

∆B̄(t) = θτ1/2Σ(t)1/2σ−1
F
·
(

τ1/2Σ(t)−1/2σF [B(t)− B̄(t)] + Z̃I (t)
)

• A trade is uninformed with probability 1− θ and, if
uninformed, adds noise to B̄(t) of

∆B̄(t) = θτ1/2Σ(t)1/2σ−1
F
· Z̃U(t).
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Diffusion Approximation

• When the arrival rate of bets γ(t) per day is sufficiently large,
the diffusion approximation for the dynamics of the estimate
B̄(t) can be written as

dB̄(t) = γ(t)·θ2·τ ·[B(t)−B̄(t)]·dt+γ(t)1/2·θ·τ1/2·Σ(t)1/2·σ−1
F
·dZ (t).

The first term corresponds to the information contained in
informed signals which arrive at rate θ · γ(t). The second
term corresponds to the noise contained in all bets arriving at
rate γ(t).
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Equilibrium Price Process

• Define
σ(t) := θ · τ1/2 · Σ(t)1/2 · γ(t)1/2.

• By applying Ito’s lemma,

dP(t)

P(t)
= 1

2 · [Σ
′(t)− σ2

F + σ(t)2] · dt + σF · dB̄(t).

• Market efficiency implies that P(t) must follow a martingale:

dΣ(t)

dt
= σ2

F − σ(t)2.
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Price Process

• Since in the equilibrium,

dP(t)

P(t)
= σ(t) · dZ̄ (t).

The process Z̄ (t) is a standardized Brownian motion under the
market’s filtration and σ(t) is the measure of returns volatility.
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Resiliency

• The difference B(t)− B̄(t) follows the mean-reverting process,

d [B(t)−B̄(t)] = −σ(t)2

Σ(t)
·[B(t)−B̄(t)]·dt+dB(t)−σ(t)

σF
·dZ (t).

• Market resiliency ρ(t) be the mean reversion rate at which
pricing errors disappear

ρ(t) =
σ(t)2

Σ(t)
.

Holding returns volatility constant, resiliency is greater in
markets with higher pricing accuracy.
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Invariance Theorem - 1

Assume the cost cI of generating a signal is an invariant constant

and let m := E{|̃i(t)|} define an additional invariant constant.

Then, the invariance conjectures hold: The dollar risk transferred

by a bet per unit of business time is a random variable with an

invariant distribution Ĩ , and the expected cost of executing a bet

C̄B is constant:

Ĩ (t) := P(t) · Q̃(t) · σ(t)

γ(t)1/2
= C̄B · ĩ(t).

C̄B = cI · θ/(1− θ).
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Invariance Theorem -2

The number of bets per day γ(t), their size Q̃(t), liquidity L(t),
pricing accuracy Σ(t)−1/2, and market resiliency ρ(t) are related to

price P(t), share volume V (t), volatility σ(t), and trading activity

W (t) = P(t) · V (t) · σ(t) by the following invariance relationships:

γ(t) =

(

λ(t) · V (t)

σ(t)P(t)m

)2

=

(

E{|Q̃(t)|}

V (t)

)

−1

=
(σ(t)L(t))2

m2
=

σ(t)2

θ2τΣ(t)
=

ρ(t)

θ2τ
=

(

W (t)

mC̄B

)2/3

.

Arrival Rate — Impact — Bet Size — Liquidity — “Efficiency” — Activity

τ is the precision of a signal, θ is the fraction of information ĩ(t)
incorporated by an informed trade. The price follows a martingale

with stochastic returns volatility σ(t) := θ · τ1/2 ·Σ(t)1/2 · γ(t)1/2.
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Proof

The proof is based on the solution of the system of four equations:

• Volume condition: γ(t) · E{|Q̃(t)|} = V (t)

• Market resiliency c̄B = λ(t) · E{Q̃2(t)},
• Volatility condition: γ(t) · λ(t)2 · E{Q̃(t)2} = P(t)2 · σ(t)2,

• Moments ratio: m = E{|Q̃(t)|}

[E{Q̃(t)2}]1/2
.

One can think of γ(t), λ(t), E{Q̃(t)2}, and E{|Q̃(t)|} as
unknown variables to be solved for in terms of known variables
V (t), c̄B , P(t), and σ(t).
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Discussion

• Trading activity W (t) and its components—prices P(t), share
volume V , and returns volatility σ(t)—are a “macroscopic”
quantities, which are easy to estimate.

• The bet arrival rate γ(t), bet size Q̃(t), the average cost of a
bet 1/L(t), pricing accuracy Σ(t)1/2, and resiliency ρ(t) are
“microscopic” quantities, which are difficult to estimate.

Invariance relationships allow to infer microscopic quantities from
macroscopic quantities (C̄B , m, and τ · θ2 are just constants).
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Discussion

• The assumption that distinct bets result from distinct pieces
of private information implies a particular level of granularity
for both signals and bets.

• The invariance of bet sizes and their cost rely on the
assumption that cost of a private signal cI and the shape of
the distribution of signals m are constant (cI can be replaced
by productivity-adjusted wage of a finance professional).

• The invariance of pricing accuracy and resiliency requires
stronger assumptions: the informativeness of a bet τ · θ2 is
constant.

• The model is motivated by the time series properties of a
single stock as its market capitalization changes, but it can
apply cross-sectionally across different securities.
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Robustness of Assumptions

• Our structural model makes numerous restrictive assumptions.
The empirical results we are about to describe are not
consistent with the “linear-normal” assumptions of the model.

• The size of unsigned bets closely fits a log-normal distribution,
not a normal distribution. A linear price impact model
predicts market impact costs reasonably well, but a square
root model of price predicts impact costs better.

• We conjecture that it should be possible to modify our
structural model to accommodate those issues.

• The model is to be interpreted as a “proof of concept”
consistent with the interpretation that the invariance
hypotheses might apply more generally.
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Intraday Patterns for S&P500 E-mini Futures
Intraday patterns for volume, volatility, number of trades, and average

trade size (Andersen, Bondarenko, Kyle, Obizhaeva (2014))
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Intraday Patterns for S&P500 E-mini Futures
Log of number of trades on log trading activity, by day and
one-minute time interval (2008-2011). Predicted coeff. is 2/3.
The fitted line is ln(Ndt) = −3.7415 + 0.661 · ln(Vdt · Pdt · σdt).
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