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The Bigger Picture

Asset prices incorporate information about the SDF and the
physical probability distribution (e.g. Ross (2013)) i.e. Q

But: asset prices alone are not sufficient to identify (without additional
restrictions) the SDF (e.g. Borovic̆ka, Hansen and Scheinkman (2014))

⇒ Two large literatures with little intersection:
1 Recovering Q (mostly from options, or term structure).
2 Identifying sources of (empirically) priced risk – aka risk

factors.

We bridge the two and show that we can jointly estimate from
the data the in-sample Q and the sources of priced risk, and
project the SDF and priced risk out-of-sample for pricing and
investment purposes.
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This Paper
1 extract, in a nonparametric fashion (via entropy), the

most likely risk neutral probability measure (Q).
2 Use the MLE of Q to estimate (via an EE) the SDF and

projects it out-of-sample: the Information-SDF
3 Construct an out-of-sample mimicking portfolio:

Information-Portfolio
Main Findings:

1 I-SDF and I-P deliver better cross-sectional pricing than
multi-factor models (i.e. better encoding of pricing anomalies).

2 I-P has high Sharpe ratio, that outperforms standard
benchmarks (market, 1/N, Value, Momentum) out-of-sample.

3 Information factors capture novel information: portable α of
3.5%− 23.8% (with high hedged Sharpe Ratio)

4 results hold for a wide cross section of assets consisting of
size, book-to-market-equity, momentum, industry, and long
term reversal sorted portfolios.
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(Other) Closely Related Literature
Recovery of Q, the SDF, and its characteristics: e.g.
Jackwerth and Rubinstein (1996), Ait-Sahalia Lo (1998,
2000), Rosenberg and Engle (2002), Chernov (2003),
Ghosh, Julliard and Taylor (2013), Hansen (2014) ....

Entropy based inference: Stutzer (1996), Kitamura and
Stutzer (2002), Julliard and Ghosh (2012), GEL literature ...

Cross-sectional asset pricing:
Lewellen, Nagel, Shanken (2010), Harvey, Liu, Zhu (2014),
Bryzgalova (2014) ...

Portfolio Investment: Markowitz (1952), MacKinlay and
Pastor (2000), Goldfard and Iyengar (2003), Jagannathan and
Ma (2003), DeMiguel, Uppal, Wang (2007),
DeMiguel, Garlappi, Uppal (2007) ...
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Change of Measures

Consider the vector of Euler equations (i.e. no arbitrage
restrictions)

0 = E [MtRe
t ] ≡

∫
MtRe

t dP

where Mt is the SDF, Re
t is a vector of excess returns and P is

the physical probability measure, and 0 is a vector of zeros.
Under very weak regularity conditions, we have

0 =

∫ Mt
M̄

Re
t dP =

∫
Re

t dQ = EQ [Re
t ]

where x̄ := E [xt ], Q is the risk neutral measure and Mt
M̄ = dQ

dP
is the Radon-Nikodym derivative.
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Why Entropy?

Given a set of excess returns data, we can estimate Q as

Q̂ = argmin
Q

D (P||Q) ≡ argmin
Q

∫
ln
( dP

dQ

)
dP s.t. 0 =

∫
Re

t dQ.

⇒ The above is a relative entropy (or KLIC) minimization, under
the asset pricing restrictions for the cross section of returns.

Note: D (P||Q) ≥ 0 and it is measured in bits of information

Also: Since relative entropy is not symmetric, we can also use
D (Q||P).
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Why Minimal Entropy?
I: Maximum Likelihood (i.e. not only an Extremum Estimator):

Let zt be a sufficient statistic for the time t state of the
economy, then

M : z→ R+ and Re : z→ RN ⇒ Mt ≡ M(zt) and Re
t ≡ Re(zt)

Moreover, defining with p and q the pdf’s of P and Q

D (P||Q) ≡
∫

ln
(

p(z)

q(z)

)
p(z)dz ≡ E [ln p(z)]− E [ln q(z)]

Hence, Q̂ solves: argmax
q

E [ln q(z)] s.t. 0 =
∫

Re(z)q(z)dz.

⇒ non parametric MLE (Owen (2001)) of the R-N measure.

to recover Mt via the Radon-Nikodym derivative simply note
that the MLE of p is p(zt) = 1/T ∀t = 1, ...,T

Note: similar argument for D (Q||P)
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Why Minimal Entropy? cont’d

II: Naturally imposes non negativity of the pricing kernel
III: Can choose any number of assets and don’t need a

decomposition of M into short and long run components (cf.
Alvarez-Jermann), nor it requires a continuum of option data (cf.
Ross)

IV: Occam’s razor: Q̂ adds to the physical measure the minimum
amount of extra information needed to price assets.

V: Appropriate for capturing tail risk (Brown and Smith (1986))

VI: Straightforward to add conditional information (i.e. scale the
moment function) and/or orthogonality restrictions.

VII: Simple to construct confidence bands (both asymptotic and by
"clever" bootstrap)
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VIII: Numerically simple via duality (e.g. Csiszar (1975))
1 If Q̂ = argmin D (P||Q), we have that (up to a scale)

M̂t = M(θ̂,Re
t ) =

1
T (1 + θ̂′Re

t )
, ∀t (1)

where θ̂ ∈ RN is the Lagrange multiplier that solves the dual:

θ̂ = argmin
θ
−

T∑
t=1

log(1 + θ′Re
t ), (2)

2 Similarly, if Q̂ = argmin D (Q||P), (up to a scale)

M̂t = M(θ̂,Re
t ) =

eθ̂′Re
t

T∑
t=1

eθ̂′Re
t

, ∀t (3)

where θ̂ ∈ RN is the Lagrange multiplier that solves the dual:

θ̂ = argmin
θ

1
T

T∑
t=1

eθ′Re
t , (4)
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Out-of-Sample Pricing Factors
Out-of-Sample I-SDF

1 Divide data Re
t ∈ RN , t = 0, ...,T − 1, into rolling subsamples

of length T̄ , final date Ti , and constant Ti+1 −Ti , i = 1, 2, ...
2 Estimate θTi over each i-th sample with data sampled at

t = Ti + 1− T̄ , ...,Ti
3 O-o-S I-SDF: M(θ̂Ti ,Re

t ), t = Ti + 1, ...,Ti+1

Out-of-Sample I-Portfolio
1 ∀i sub-sample set: M̂i ,t = M(θ̂Ti ,Re

t ), t = Ti + 1− T̄ , ...,Ti
2 Project M̂i ,t on the space of excess returns to obtain the

portfolio weights ωTi ∈ RN (normalised to sum to 1)
3 O-o-S I-Portfolio: R IP

t = ω′Ti
Re

t , t = Ti + 1, ...,Ti+1

Implementation: T̄ = half sample, and Ti+1 − Ti= 1 year (June).
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Cross-Sectional Pricing
Table 1: 25 FF Portfolios, 1929:04-2010:12
const. λIP λsdf λRm λSMB λHML R2

OLS R2
GLS T 2 q

Panel A: Monthly
0.003
(5.73)

−0.341
(−7.06)

67.0
[57.4,100]

56.6
[54.4,100]

37.5
(0.182)

0.077
[0.0,0.056]

0.003
(5.70)

0.023
(7.32)

68.6
[52.1,100]

59.6
[75.0,100]

37.10
(0.096)

0.072
[0.0,0.064]

0.011
(3.40)

−0.004
(−1.41)

3.97
[−3.82,59.8]

28.8
[19.4,40.9]

71.64
(0.000)

0.128
[0.045,0.145]

0.011
(2.50)

−0.006
(−1.53)

0.002
(3.86)

0.004
(6.87)

71.3
[48.9,89.2]

40.9
[31.4,82.8]

51.46
(0.003)

0.096
[0.040,0.100]

0.004
(1.20)

0.025
(5.26)

0.0004
(0.132)

0.003
(6.75)

0.004
(8.48)

86.1
[,]

62.2
[,]

29.25
(0.083)

0.058
[,]

Panel B: Quarterly
0.028
(11.33)

−5.46
(−3.13)

26.8
[4.38,100]

30.8
[16.9,69.5]

41.31
(0.469)

0.332
[0.0,0.438]

0.002
(1.29)

0.135
(11.17)

83.7
[86.9,100]

51.6
[52.2,100]

28.77
(0.533)

0.227
[0.0,0.164]

0.024
(2.79)

−0.002
(−0.308)

−3.92
[−4.33,25.7]

8.50
[4.88,11.9]

80.90
(0.000)

0.431
[0.14,0.42]

0.028
(2.19)

−0.015
(−1.15)

0.007
(4.95)

0.013
(7.20)

74.7
[0.52,0.94]

17.7
[0.018,0.56]

59.34
(0.001)

0.351
[0.066,0.37]

0.005
(0.403)

0.108
(3.71)

0.010
(0.768)

0.008
(6.60)

0.012
(7.85)

83.4
[,]

46.5
[,]

31.06
(0.054)

0.217
[,]
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Cross-Sectional Pricing cont’d

Table 2: 10 Momentum Portfolios, 1929:04-2010:12
const. λIP λsdf λRm λSMB λHML λMOM R2

OLS R2
GLS T 2 q

Panel A: Monthly
0.004
(9.99)

−0.27
(−9.16)

90.2
[78.9,100]

68.1
[56.8,100]

12.37
(0.345)

0.024
[0.0,0.031]

0.002
(7.80)

0.034
(13.66)

95.4
[92.0,100]

83.6
[84.3,100]

6.37
(0.657)

0.012
[0.0,0.015]

0.014
(2.04)

−0.009
(−1.45)

10.9
[−12.4,60.1]

−2.0
[−11.7,16.9]

40.15
(0.000)

0.074
[0.026,0.117]

0.022
(1.27)

−0.013
(−0.75)

−0.011
(−0.61)

−0.032
(−1.18)

0.007
(6.02)

78.9
[32.9,100]

2.59
[−73.1,98.4]

8.81
(0.399)

0.044
[0.0,0.823]

0.003
(0.42)

0.039
(4.36)

0.004
(0.60)

−0.005
(−0.80)

−0.015
(−1.60)

0.006
(14.64)

97.7
[,]

82.1
[,]

2.61
(0.625)

0.006
[,]

Panel B: Quarterly
0.008
(6.39)

−1.07
(−7.93)

87.3
[67.9,100]

75.2
[72.2,100]

8.12
(0.529)

0.056
[0.0,0.080]

0.006
(5.60)

0.107
(9.90)

95.4
[86.3,100]

78.6
[76.9,100]

7.36
(0.581)

0.047
[0.0,0.048]

0.038
(2.40)

−0.024
(−1.59)

14.4
[−11.4,81.2]

−6.49
[−12.5,13.7]

39.55
(0.001)

0.226
[0.077,0.381]

0.061
(1.08)

−0.050
(−0.83)

0.038
(1.03)

0.021
(0.63)

0.022
(5.46)

75.4
[20.9,96.5]

1.56
[−73.6,81.2]

9.55
(0.187)

0.131
[0.0,1.346]

0.036
(2.43)

0.084
(3.69)

−0.024
(−1.54)

0.032
(3.28)

0.0005
(0.05)

0.021
(20.80)

98.4
[,]

86.7
[,]

1.35
(0.853)

0.014
[,]
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Cross-Sectional Pricing cont’d
Table 3: 25 Portfolios Formed on Long-Term Reversal and Size, 1929:04-2010:12
const. λIP λsdf λRm λSMB λHML R2

OLS R2
GLS T 2 q

Panel A: Monthly
0.006
(7.06)

−0.22
(−2.18)

13.5
[−0.83,100]

61.5
[56.4,100]

25.07
(0.583)

0.047
[0.0,0.036]

0.002
(2.13)

0.024
(7.98)

72.3
[66.4,100]

68.0
[71.0,100]

18.35
(0.844)

0.037
[0.0,0.007]

0.005
(1.38)

0.002
(0.78)

−1.6
[−4.10,44.7]

10.1
[1.83,21.7]

58.14
(0.002)

0.103
[0.028,0.111]

0.002
(0.68)

0.002
(0.93)

0.001
(1.62)

0.007
(4.96)

74.3
[56.7,100]

26.1
[12.4,100]

40.37
(0.018)

0.077
[0.01,0.070]

−0.002
(−0.86)

0.022
(5.50)

0.006
(2.77)

0.003
(3.99)

0.004
(3.39)

84.5
[,]

66.4
[,]

16.69
(0.673)

0.033
[,]

Panel B: Quarterly
0.023
(11.80)

−0.33
(−0.300)

−3.94
[,]

27.2
[,]

54.50
(0.000)

0.291
[,]

0.008
(3.13)

0.075
(5.71)

56.8
[39.0,100]

56.5
[56.9,100]

23.96
(0.735)

0.167
[0.0,0.064]

0.008
(1.04)

0.013
(1.81)

8.7
[,]

1.33
[,]

68.46
(0.000)

0.372
[,]

0.006
(0.651)

0.009
(1.03)

0.005
(2.59)

0.020
(4.76)

77.8
[,]

11.96
[,]

48.86
(0.000)

0.301
[,]

0.002
(0.329)

0.070
(5.28)

0.012
(1.80)

0.011
(5.13)

0.007
(1.47)

86.7
[,]

53.0
[,]

22.61
(0.309)

0.153
[,]
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Cross-Sectional Pricing cont’d
Table 4: Small, Large, Growth, Value, Winners, Losers, 10 Industry, 1929:04-2010:12
const. λIP λsdf λRm λSMB λHML λMOM R2

OLS R2
GLS T 2 q

Panel A: Monthly
0.001
(2.49)

−1.12
(−16.7)

94.9
[,]

88.0
[,]

5.39
(0.980)

0.013
[,]

0.003
(7.45)

0.027
(8.62)

83.0
[,]

84.2
[,]

9.89
(0.770)

0.019
[,]

0.007
(2.02)

−0.002
(−0.70)

−3.5
[,]

−1.17
[,]

62.76
(0.000)

0.112
[,]

0.003
(1.25)

0.002
(1.09)

0.002
(2.42)

0.002
(1.92)

0.009
(8.78)

84.8
[,]

40.3
[,]

27.23
(0.004)

0.052
[,]

−0.003
(−1.58)

0.035
(8.10)

0.007
(4.45)

0.003
(5.44)

0.0003
(0.51)

0.008
(10.65)

94.7
[,]

84.8
[,]

5.73
(0.838)

0.012
[,]

Panel B: Quarterly
0.014
(12.44)

−3.88
(−6.92)

75.8
[,]

60.9
[,]

17.15
(0.248)

0.145
[,]

0.009
(5.81)

0.100
(6.61)

74.0
[,]

79.9
[,]

10.85
(0.698)

0.077
[,]

0.021
(2.10)

−0.005
(−0.52)

−5.1
[,]

0.73
[,]

67.17
(0.000)

0.358
[,]

0.012
(1.47)

0.004
(0.45)

0.006
(2.50)

0.005
(2.01)

0.027
(7.97)

82.9
[,]

37.3
[,]

27.86
(0.003)

0.178
[,]

−0.002
(−0.26)

0.107
(4.62)

0.017
(2.16)

0.008
(3.89)

0.002
(1.10)

0.024
(8.43)

89.6
[,]

75.8
[,]

8.27
(0.602)

0.062
[,]
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Cross-Sectional Pricing cont’d
Table 5: 30 Industry Portfolios, 1929:04-2010:12
const. λIP λsdf λRm λSMB λHML R2

OLS R2
GLS T 2 q

Panel A: Monthly
0.002
(2.58)

−0.15
(−3.97)

33.8
[,]

50.1
[,]

12.61
(0.994)

0.023
[,]

0.001
(1.42)

0.022
(5.74)

52.5
[,]

65.6
[,]

8.56
(1.00)

0.016
[,]

0.006
(3.55)

−0.0001
(−0.12)

−3.52
[,]

−2.30
[,]

26.69
(0.535)

0.047
[,]

0.006
(2.46)

−0.001
(−0.36)

0.0004
(0.26)

−0.001
(−0.75)

−8.33
[,]

−7.32
[,]

26.00
(0.463)

0.046
[,]

0.000
(0.023)

0.025
(5.79)

0.005
(2.93)

−0.0001
(−0.14)

−0.001
(−1.07)

60.4
[,]

64.6
[,]

7.55
(1.00)

0.015
[,]

Panel B: Quarterly
0.011
(2.93)

−1.72
(−1.64)

5.55
[,]

31.4
[,]

23.49
(0.708)

0.133
[,]

0.010
(3.48)

0.043
(2.66)

17.3
[,]

39.9
[,]

20.66
(0.839)

0.116
[,]

0.017
(3.55)

0.001
(0.127)

−3.51
[,]

2.68
[,]

35.16
(0.165)

0.187
[,]

0.023
(2.51)

−0.006
(−0.62)

0.003
(0.71)

−0.002
(−0.43)

−8.40
[,]

−1.64
[,]

33.57
(0.146)

0.181
[,]

0.020
(2.58)

0.042
(2.42)

−0.003
(−0.350)

0.006
(1.81)

−0.002
(−0.562)

26.6
[,]

42.9
[,]

16.29
(0.906)

0.098
[,]
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The Information Portfolio

Table 8: Summary Statistics of Information Portfolio & Returns
Assets Mean Vol SR Skew Kurt CEQ Ret-gain

Panel A: Monthly
Market - Risk Free 0.004 0.045 0.091 −0.567 5.028 0.003
Value - Growth 0.004 0.029 0.139 −0.034 5.440 0.004

Momentum Factor 0.007 0.044 0.164 −1.419 13.65 0.006
R IP

(FF25)
0.021
(0.007)

0.073
(0.051)

0.288
(0.128)

0.384
(−0.575)

5.541
(5.589)

0.018
(0.006)

0.008

R IP
(10 Momentum)

0.030
(0.004)

0.127
(0.048)

0.235
(0.085)

−0.352
(−0.326)

8.022
(4.793)

0.022
(0.003)

0.007

R IP
(25 L-T Reversal & Size)

0.013
(0.007)

0.064
(0.051)

0.206
(0.137)

−0.212
(−0.444)

5.111
(5.865)

0.011
(0.006)

0.003

R IP
(S, B, G, V, W, L, 10 Ind.)

0.027
(0.005)

0.088
(0.046)

0.306
(0.106)

−0.679
(−0.490)

6.180
(4.953)

0.023
(0.004)

0.009

R IP
(30 Industry)

0.002
(0.005)

0.083
(0.048)

0.018
(0.112)

0.040
(−0.522)

6.318
(5.708)

−0.001
(0.004)

−0.004

Note: 1/N portfolio in parenthesis.
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The Information Portfolio

Table 8: Summary Statistics of Information Portfolio & Returns
Assets Mean Vol SR Skew Kurt CEQ Ret-gain

Panel B: Quarterly
Market - Risk Free 0.013 0.087 0.150 −0.435 3.635 0.009
Value - Growth 0.012 0.060 0.204 0.109 4.754 0.010

Momentum Factor 0.020 0.081 0.254 −1.411 10.13 0.017
R IP

(FF25)
0.080
(0.021)

0.194
(0.103)

0.413
(0.207)

0.410
(−0.183)

3.955
(3.576)

0.061
(0.016)

0.022

R IP
(10 Momentum)

0.085
(0.013)

0.239
(0.093)

0.354
(0.143)

−0.090
(−0.231)

5.295
(3.805)

0.056
(0.009)

0.020

R IP
(25 L-T Reversal & Size)

0.042
(0.023)

0.134
(0.104)

0.313
(0.220)

−0.168
(−0.057)

3.833
(3.865)

0.033
(0.018)

0.010

R IP
(S, B, G, V, W, L, 10 Ind.)

0.083
(0.016)

0.173
(0.090)

0.480
(0.175)

0.181
(−0.315)

3.463
(3.794)

0.068
(0.012)

0.027

R IP
(30 Industry)

0.007
(0.017)

0.180
(0.093)

0.041
(0.186)

0.029
(−0.298)

2.934
(3.942)

−0.009
(0.013)

−0.013

Note: 1/N portfolio in parenthesis.
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R IP : S, M , V and G aggregated weights
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Portable α: an “Information Anomaly”

Table 7: R IP α With Respect to FF and Momentum Factors, 1929:04-2010:12
Assets α (%) βRm βSMB βHML βMOM R2

OLS Info-Ratio
Panel A: Monthly

FF25 1.31
(4.89)

0.47
(7.44)

0.21
(2.41)

1.30
(13.82)

26.9 0.211

10 Momentum 1.37
(3.06)

0.94
(9.03)

−0.30
(−2.09)

0.26
(1.67)

1.67
(16.52)

36.1 0.135

25 L-T Reversal & Size 0.69
(2.79)

0.40
(6.92)

0.35
(4.39)

0.92
(10.56)

20.7 0.121

S, B, G, V, W, L, 10 Ind. 0.93
(3.28)

0.59
(9.00)

0.35
(3.90)

1.28
(12.87)

1.25
(19.70)

46.6 0.145

30 Industry 0.29
(0.96)

0.81
(11.43)

−0.87
(−8.79)

−0.59
(−5.57)

28.3 0.041

Annualised α: 3.5%-17.7%

24/28 Ghosh, Julliard and Taylor (2014) Information Factor 	



The Big Picture
Methodology

Empirical Analysis

Cross-Sectional Pricing
The Information Portfolio
Portable α

Portable α: an “Information Anomaly” cont’d

Table 7: R IP α With Respect to FF and Momentum Factors, 1929:04-2010:12
Assets α (%) βRm βSMB βHML βMOM R2

OLS Info-Ratio
Panel B: Quarterly

FF25 5.49
(4.01)

0.59
(3.29)

0.43
(1.72)

1.12
(4.85)

15.4 0.310

10 Momentum 2.63
(1.77)

1.20
(6.52)

−0.21
(−0.82)

0.43
(1.76)

1.92
(10.76)

42.6 0.147

25 L-T Reversal & Size 2.39
(2.57)

0.50
(4.16)

0.01
(0.06)

0.93
(5.94)

18.0 0.199

S, B, G, V, W, L, 10 Ind. 3.21
(2.77)

0.67
(4.70)

0.29
(1.42)

1.16
(6.15)

1.23
(8.89)

33.6 0.230

30 Industry 1.16
(1.00)

1.02
(6.73)

−1.01
(−4.72)

−0.66
(−3.37)

29.1 0.077

Annualised α: 4.7%-23.8%
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Why does it work?

The maximum Sharpe Ratio portfolio must price the
cross-section of assets (since it pins down the Capital
Allocation Line).
Standard methods for forecasting this portfolio use the
asset side i.e. tangency of the Efficient Frontier and the
Capital Allocation Line

⇒ They don’t work empirically due to measurement error on
N + N(N + 1)/2 parameters (mean plus covariance matrix)
e.g. DeMiguel, Garlappi, Uppal (2007)

E.g. : with N=25 this method requires 350 parameters!
Our method uses the SDF side i.e. tangency of the
Indifference Curve to the Capital Allocation Line

⇒ need to estimate only N parameters of the dual solution.
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Conclusion

The paper provides a novel (ML) method for the extraction of the
SDF, and its mimicking portfolio, that:

Prices assets out-of-sample as well or better than canonical
factor models.
Identifies a large amount of risk not spanned by traditional
factors.
Provides a tradeable portfolio that:

1 is statistically indistinguishable from the maximum Sharpe
Ratio portfolio;

2 has very high Sharpe Ratio even when hedged w.r.t.
traditional factors;

3 has low turnover, hence low trading costs.
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