Information Factor: A One Factor Benchmark Model for Asset Pricing

Anisha Ghosh[◊] Christian Julliard* Alex Taylor[†]

^oCarnegie Mellon University

*London School of Economics and CEPR

[†]University of Manchester

ICEF-LFE Workshop in Financial Economics – November 7th 2014

æ

イロト イポト イヨト イヨト

Introduction (Other) Closely Related Literature

The Bigger Picture

- Asset prices incorporate information about the SDF and the physical probability distribution (e.g. Ross (2013)) i.e. $\mathbb Q$
- But: asset prices alone are not sufficient to identify (without additional restrictions) the SDF (e.g. Borovička, Hansen and Scheinkman (2014))
 - $\Rightarrow\,$ Two large literatures with little intersection:
 - $lacksymbol{0}$ Recovering $\mathbb Q$ (mostly from options, or term structure).
 - Identifying sources of (empirically) priced risk aka risk factors.

We bridge the two and show that we can jointly estimate from the data the in-sample \mathbb{Q} and the sources of priced risk, and project the SDF and priced risk out-of-sample for pricing and investment purposes.

Information Factor

Introduction (Other) Closely Related Literature

The Bigger Picture

- Asset prices incorporate information about the SDF and the physical probability distribution (e.g. Ross (2013)) i.e. $\mathbb Q$
- But: asset prices alone are not sufficient to identify (without additional restrictions) the SDF (e.g. Borovička, Hansen and Scheinkman (2014))
 - \Rightarrow Two large literatures with little intersection:
 - **)** Recovering \mathbb{Q} (mostly from options, or term structure).

Identifying sources of (empirically) priced risk – aka risk factors.

We bridge the two and show that we can jointly estimate from the data the in-sample \mathbb{Q} and the sources of priced risk, and project the SDF and priced risk out-of-sample for pricing and investment purposes.

Introduction (Other) Closely Related Literature

The Bigger Picture

- Asset prices incorporate information about the SDF and the physical probability distribution (e.g. Ross (2013)) i.e. $\mathbb Q$
- But: asset prices alone are not sufficient to identify (without additional restrictions) the SDF (e.g. Borovička, Hansen and Scheinkman (2014))
 - \Rightarrow Two large literatures with little intersection:
 - **9** Recovering \mathbb{Q} (mostly from options, or term structure).
 - Identifying sources of (empirically) priced risk aka risk factors.

We bridge the two and show that we can jointly estimate from the data the in-sample \mathbb{Q} and the sources of priced risk, and project the SDF and priced risk out-of-sample for pricing and investment purposes.

Introduction (Other) Closely Related Literature

The Bigger Picture

- Asset prices incorporate information about the SDF and the physical probability distribution (e.g. Ross (2013)) i.e. $\mathbb Q$
- But: asset prices alone are not sufficient to identify (without additional restrictions) the SDF (e.g. Borovička, Hansen and Scheinkman (2014))
 - ⇒ Two large literatures with little intersection:
 - **(** Recovering \mathbb{Q} (mostly from options, or term structure).
 - Identifying sources of (empirically) priced risk aka risk factors.

We bridge the two and show that we can jointly estimate from the data the in-sample \mathbb{Q} and the sources of priced risk, and project the SDF and priced risk out-of-sample for pricing and investment purposes.

イロト 不得 トイヨト イヨト 二日

Introduction (Other) Closely Related Literature

This Paper

- extract, in a nonparametric fashion (via entropy), the most likely risk neutral probability measure (Q).
- Ouse the MLE of Q to estimate (via an EE) the SDF and projects it out-of-sample: the Information-SDF
- Onstruct an out-of-sample mimicking portfolio: Information-Portfolio

- I-SDF and I-P deliver better cross-sectional pricing than multi-factor models (i.e. better encoding of pricing anomalies).
- I-P has high Sharpe ratio, that outperforms standard benchmarks (market, 1/N, Value, Momentum) out-of-sample.
- (a) Information factors capture novel information: portable α of 3.5% 23.8% (with high hedged Sharpe Ratio)
- Information Factor
 Information Factor
 Information Factor

Introduction (Other) Closely Related Literature

This Paper

- extract, in a nonparametric fashion (via entropy), the most likely risk neutral probability measure (Q).
- Ouse the MLE of Q to estimate (via an EE) the SDF and projects it out-of-sample: the Information-SDF
- Onstruct an out-of-sample mimicking portfolio: Information-Portfolio

- I-SDF and I-P deliver better cross-sectional pricing than multi-factor models (i.e. better encoding of pricing anomalies).
- I-P has high Sharpe ratio, that outperforms standard benchmarks (market, 1/N, Value, Momentum) out-of-sample.
- (a) Information factors capture novel information: portable α of 3.5% 23.8% (with high hedged Sharpe Ratio)
- Information Factor
 Information Factor
 Information Factor

Introduction (Other) Closely Related Literature

This Paper

- extract, in a nonparametric fashion (via entropy), the most likely risk neutral probability measure (Q).
- Use the MLE of Q to estimate (via an EE) the SDF and projects it out-of-sample: the Information-SDF
- Onstruct an out-of-sample mimicking portfolio: Information-Portfolio

- I-SDF and I-P deliver better cross-sectional pricing than multi-factor models (i.e. better encoding of pricing anomalies).
- I-P has high Sharpe ratio, that outperforms standard benchmarks (market, 1/N, Value, Momentum) out-of-sample.
- Information factors capture novel information: portable α of 3.5% 23.8% (with high hedged Sharpe Ratio)
- results hold for a wide cross section of assets consisting of size, book-to-market-equity, momentum, industry, and long term reversal sorted portfolios.

Introduction (Other) Closely Related Literature

This Paper

- extract, in a nonparametric fashion (via entropy), the most likely risk neutral probability measure (Q).
- Use the MLE of Q to estimate (via an EE) the SDF and projects it out-of-sample: the Information-SDF
- Onstruct an out-of-sample mimicking portfolio: Information-Portfolio

- I-SDF and I-P deliver better cross-sectional pricing than multi-factor models (i.e. better encoding of pricing anomalies).
- I-P has high Sharpe ratio, that outperforms standard benchmarks (market, 1/N, Value, Momentum) out-of-sample.
- Information factors capture novel information: portable α of 3.5% 23.8% (with high hedged Sharpe Ratio)
- results hold for a wide cross section of assets consisting of size, book-to-market-equity, momentum, industry, and long term reversal sorted portfolios.

Introduction (Other) Closely Related Literature

This Paper

- extract, in a nonparametric fashion (via entropy), the most likely risk neutral probability measure (Q).
- Use the MLE of Q to estimate (via an EE) the SDF and projects it out-of-sample: the Information-SDF
- Onstruct an out-of-sample mimicking portfolio: Information-Portfolio

- I-SDF and I-P deliver better cross-sectional pricing than multi-factor models (i.e. better encoding of pricing anomalies).
- I-P has high Sharpe ratio, that outperforms standard benchmarks (market, 1/N, Value, Momentum) out-of-sample.
- Information factors capture novel information: portable α of 3.5% 23.8% (with high hedged Sharpe Ratio)
- results hold for a wide cross section of assets consisting of size, book-to-market-equity, momentum, industry, and long term reversal sorted portfolios. Ghosh, Juliard and Taylor (2014)

Introduction (Other) Closely Related Literature

This Paper

- extract, in a nonparametric fashion (via entropy), the most likely risk neutral probability measure (Q).
- Use the MLE of Q to estimate (via an EE) the SDF and projects it out-of-sample: the Information-SDF
- Onstruct an out-of-sample mimicking portfolio: Information-Portfolio

- I-SDF and I-P deliver better cross-sectional pricing than multi-factor models (i.e. better encoding of pricing anomalies).
- I-P has high Sharpe ratio, that outperforms standard benchmarks (market, 1/N, Value, Momentum) out-of-sample.
- Information factors capture novel information: portable α of 3.5% 23.8% (with high hedged Sharpe Ratio)
- Information Factor
 Information Factor
 Information Factor

Introduction (Other) Closely Related Literature

This Paper

- extract, in a nonparametric fashion (via entropy), the most likely risk neutral probability measure (Q).
- Use the MLE of Q to estimate (via an EE) the SDF and projects it out-of-sample: the Information-SDF
- Onstruct an out-of-sample mimicking portfolio: Information-Portfolio

- I-SDF and I-P deliver better cross-sectional pricing than multi-factor models (i.e. better encoding of pricing anomalies).
- I-P has high Sharpe ratio, that outperforms standard benchmarks (market, 1/N, Value, Momentum) out-of-sample.
- Solution factors capture novel information: portable α of 3.5% 23.8% (with high hedged Sharpe Ratio)
- results hold for a wide cross section of assets consisting of size, book-to-market-equity, momentum, industry, and long term reversal sorted portfolios. Ghosh, Juliard and Taylor (2014)

Introduction (Other) Closely Related Literature

This Paper

- extract, in a nonparametric fashion (via entropy), the most likely risk neutral probability measure (Q).
- Use the MLE of Q to estimate (via an EE) the SDF and projects it out-of-sample: the Information-SDF
- Onstruct an out-of-sample mimicking portfolio: Information-Portfolio

- I-SDF and I-P deliver better cross-sectional pricing than multi-factor models (i.e. better encoding of pricing anomalies).
- I-P has high Sharpe ratio, that outperforms standard benchmarks (market, 1/N, Value, Momentum) out-of-sample.
- Solution factors capture novel information: portable α of 3.5% 23.8% (with high hedged Sharpe Ratio)
- results hold for a wide cross section of assets consisting of size, book-to-market-equity, momentum, industry, and long term reversal sorted portfolios.

The Big Picture Methodology

Recovery of Q, the SDF, and its characteristics: e.g. Jackwerth and Rubinstein (1996), Ait-Sahalia Lo (1998, 2000), Rosenberg and Engle (2002), Chernov (2003), Ghosh, Julliard and Taylor (2013), Hansen (2014)

(Other) Closely Related Literature

- Entropy based inference: Stutzer (1996), Kitamura and Stutzer (2002), Julliard and Ghosh (2012), GEL literature ...
- Cross-sectional asset pricing:
 Lowellon Nagel Shankon (2010) Hank

Lewellen, Nagel, Shanken (2010), Harvey, Liu, Zhu (2014), Bryzgalova (2014) ...

 Portfolio Investment: Markowitz (1952), MacKinlay and Pastor (2000), Goldfard and Iyengar (2003), Jagannathan and Ma (2003), DeMiguel, Uppal, Wang (2007), DeMiguel, Garlappi, Uppal (2007)

Recovery of Q, the SDF, and its characteristics: e.g. Jackwerth and Rubinstein (1996), Ait-Sahalia Lo (1998, 2000), Rosenberg and Engle (2002), Chernov (2003), Ghosh, Julliard and Taylor (2013), Hansen (2014)

(Other) Closely Related Literature

The Big Picture Methodology

Empirical Analysis

- Entropy based inference: Stutzer (1996), Kitamura and Stutzer (2002), Julliard and Ghosh (2012), GEL literature ...
- Cross-sectional asset pricing: Lewellen, Nagel, Shanken (2010), Harvey, Liu, Zhu (2014), Bryzgalova (2014) ...
- Portfolio Investment: Markowitz (1952), MacKinlay and Pastor (2000), Goldfard and Iyengar (2003), Jagannathan and Ma (2003), DeMiguel, Uppal, Wang (2007), DeMiguel, Garlappi, Uppal (2007)

Recovery of Q, the SDF, and its characteristics: e.g. Jackwerth and Rubinstein (1996), Ait-Sahalia Lo (1998, 2000), Rosenberg and Engle (2002), Chernov (2003), Ghosh, Julliard and Taylor (2013), Hansen (2014)

(Other) Closely Related Literature

The Big Picture Methodology

Empirical Analysis

- Entropy based inference: Stutzer (1996), Kitamura and Stutzer (2002), Julliard and Ghosh (2012), GEL literature
- Cross-sectional asset pricing: Lewellen, Nagel, Shanken (2010), Harvey, Liu, Zhu (2014),

Bryzgalova (2014) ...

 Portfolio Investment: Markowitz (1952), MacKinlay and Pastor (2000), Goldfard and Iyengar (2003), Jagannathan and Ma (2003), DeMiguel, Uppal, Wang (2007), DeMiguel, Garlappi, Uppal (2007)

Recovery of Q, the SDF, and its characteristics: e.g. Jackwerth and Rubinstein (1996), Ait-Sahalia Lo (1998, 2000), Rosenberg and Engle (2002), Chernov (2003), Ghosh, Julliard and Taylor (2013), Hansen (2014)

(Other) Closely Related Literature

The Big Picture Methodology

Empirical Analysis

- Entropy based inference: Stutzer (1996), Kitamura and Stutzer (2002), Julliard and Ghosh (2012), GEL literature ...
- Cross-sectional asset pricing:

Lewellen, Nagel, Shanken (2010), Harvey, Liu, Zhu (2014), Bryzgalova (2014) ...

 Portfolio Investment: Markowitz (1952), MacKinlay and Pastor (2000), Goldfard and Iyengar (2003), Jagannathan and Ma (2003), DeMiguel, Uppal, Wang (2007), DeMiguel, Garlappi, Uppal (2007)

Introduction (Other) Closely Related Literature

Outline

1 The Big Picture

- Introduction
- (Other) Closely Related Literature
- 2 Methodology: An Information Theoretic Approach
 - Change of Measure and Relative Entropy
 - Why Entropy?

Empirical Analysis

- Cross-Sectional Pricing
- The Information Portfolio
- Portable α : an "Information Anomaly"

4 Conclusion

Appendix

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Change of Measure and Relative Entropy Why Entropy?

Outline

The Big Picture

- Introduction
- (Other) Closely Related Literature
- Methodology: An Information Theoretic Approach
 Change of Measure and Relative Entropy
 Why Entropy?

3 Empirical Analysis

- Cross-Sectional Pricing
- The Information Portfolio
- Portable α : an "Information Anomaly"

4 Conclusion

Appendix

イロト イポト イヨト イヨト

Change of Measure and Relative Entropy Why Entropy?

Change of Measures

Consider the vector of Euler equations (i.e. no arbitrage restrictions)

$$\mathbf{0} = \mathbb{E}\left[M_t \mathbf{R}_t^e\right] \equiv \int M_t \mathbf{R}_t^e d\mathbb{P}$$

where M_t is the SDF, \mathbf{R}_t^e is a vector of excess returns and \mathbb{P} is the physical probability measure, and $\mathbf{0}$ is a vector of zeros.

• Under very weak regularity conditions, we have

$$\mathbf{0} = \int \frac{M_t}{\bar{M}} \mathbf{R}_t^e \, d\mathbb{P} = \int \mathbf{R}_t^e \, d\mathbb{Q} = \mathbb{E}^{\mathbb{Q}} \left[\mathbf{R}_t^e \right]$$

where $\bar{x} := \mathbb{E}[x_t]$, \mathbb{Q} is the risk neutral measure and $\frac{M_t}{M} = \frac{d\mathbb{Q}}{d\mathbb{P}}$ is the Radon-Nikodym derivative.

Change of Measure and Relative Entropy Why Entropy?

Change of Measures

Consider the vector of Euler equations (i.e. no arbitrage restrictions)

$$\mathbf{0} = \mathbb{E}\left[M_t \mathbf{R}_t^e\right] \equiv \int M_t \mathbf{R}_t^e d\mathbb{P}$$

where M_t is the SDF, \mathbf{R}_t^e is a vector of excess returns and \mathbb{P} is the physical probability measure, and **0** is a vector of zeros.

• Under very weak regularity conditions, we have

$$\mathbf{0} = \int \frac{M_t}{\bar{M}} \mathbf{R}_t^e \, d\mathbb{P} = \int \mathbf{R}_t^e \, d\mathbb{Q} = \mathbb{E}^{\mathbb{Q}} \left[\mathbf{R}_t^e \right]$$

where $\bar{x} := \mathbb{E}[x_t]$, \mathbb{Q} is the risk neutral measure and $\frac{M_t}{M} = \frac{d\mathbb{Q}}{d\mathbb{P}}$ is the Radon-Nikodym derivative.

 $\bullet\,$ Given a set of excess returns data, we can estimate $\mathbb Q$ as

$$\hat{\mathbb{Q}} = \mathop{\arg\min}_{\mathbb{Q}} D\left(\mathbb{P} ||\mathbb{Q}\right) \equiv \mathop{\arg\min}_{\mathbb{Q}} \int \ln\left(\frac{d\mathbb{P}}{d\mathbb{Q}}\right) d\mathbb{P} \text{ s.t. } \mathbf{0} = \int \mathbf{R}_t^e d\mathbb{Q}.$$

 \Rightarrow The above is a relative entropy (or KLIC) minimization, under the asset pricing restrictions for the cross section of returns.

Note: $D\left(\mathbb{P}||\mathbb{Q}\right) \geq 0$ and it is measured in bits of information

Also: Since relative entropy is not symmetric, we can also use $D(\mathbb{Q}||\mathbb{P}).$

 $\bullet\,$ Given a set of excess returns data, we can estimate $\mathbb Q$ as

$$\hat{\mathbb{Q}} = \argmin_{\mathbb{Q}} D\left(\mathbb{P}||\mathbb{Q}\right) \equiv \argmin_{\mathbb{Q}} \int \ln\left(\frac{d\mathbb{P}}{d\mathbb{Q}}\right) d\mathbb{P} \text{ s.t. } \mathbf{0} = \int \mathbf{R}_t^e d\mathbb{Q}.$$

- ⇒ The above is a relative entropy (or KLIC) minimization, under the asset pricing restrictions for the cross section of returns.
- Note: $D\left(\mathbb{P}||\mathbb{Q}\right) \geq 0$ and it is measured in bits of information
- Also: Since relative entropy is not symmetric, we can also use $D(\mathbb{Q}||\mathbb{P}).$

 $\bullet\,$ Given a set of excess returns data, we can estimate $\mathbb Q$ as

$$\hat{\mathbb{Q}} = \argmin_{\mathbb{Q}} D\left(\mathbb{P}||\mathbb{Q}\right) \equiv \argmin_{\mathbb{Q}} \int \ln\left(\frac{d\mathbb{P}}{d\mathbb{Q}}\right) d\mathbb{P} \text{ s.t. } \mathbf{0} = \int \mathbf{R}_t^e d\mathbb{Q}.$$

- ⇒ The above is a relative entropy (or KLIC) minimization, under the asset pricing restrictions for the cross section of returns.
- Note: $D(\mathbb{P}||\mathbb{Q}) \ge 0$ and it is measured in bits of information
- Also: Since relative entropy is not symmetric, we can also use $D(\mathbb{Q}||\mathbb{P}).$

<ロ> (四) (四) (三) (三) (三) 三目

Change of Measure and Relative Entropy Why Entropy?

Why Minimal Entropy?

- I: <u>Maximum Likelihood</u> (i.e. not only an Extremum Estimator):
 - Let z_t be a sufficient statistic for the time t state of the economy, then

 $M: z \to \mathbb{R}_+$ and $\mathbf{R}^e: z \to \mathbb{R}^N \Rightarrow M_t \equiv M(z_t)$ and $\mathbf{R}^e_t \equiv \mathbf{R}^e(z_t)$

- Moreover, defining with p and q the pdf's of \mathbb{P} and \mathbb{Q} $D(\mathbb{P}||\mathbb{Q}) \equiv \int \ln\left(\frac{p(z)}{q(z)}\right) p(z) dz \equiv \mathbb{E}\left[\ln p(z)\right] - \mathbb{E}\left[\ln q(z)\right]$
- Hence, $\hat{\mathbb{Q}}$ solves: $\arg \max \mathbb{E}[\ln q(z)]$ s.t. $\mathbf{0} = \int \mathbb{R}^{e}(z)q(z)dz$. \Rightarrow non parametric MLE (Owen (2001)) of the R-N measure.
- to recover M_t via the Radon-Nikodym derivative simply note that the MLE of p is $p(\mathbf{z}_t) = 1/T \ \forall t = 1, ..., T$

Note: similar argument for $D\left(\mathbb{Q}||\mathbb{P} ight)$

Ghosh, Julliard and Taylor (2014)

Information Factor

イロト イヨト イヨト イヨト 三日

Change of Measure and Relative Entropy Why Entropy?

Why Minimal Entropy?

- I: <u>Maximum Likelihood</u> (i.e. not only an Extremum Estimator):
 - Let z_t be a sufficient statistic for the time t state of the economy, then

 $M: z \to \mathbb{R}_+$ and $\mathbf{R}^e: z \to \mathbb{R}^N \Rightarrow M_t \equiv M(z_t)$ and $\mathbf{R}^e_t \equiv \mathbf{R}^e(z_t)$

- Moreover, defining with p and q the pdf's of \mathbb{P} and \mathbb{Q} $D(\mathbb{P}||\mathbb{Q}) \equiv \int \ln\left(\frac{p(z)}{q(z)}\right) p(z) dz \equiv \mathbb{E}\left[\ln p(z)\right] - \mathbb{E}\left[\ln q(z)\right]$
- Hence, $\hat{\mathbb{Q}}$ solves: $\arg \max \mathbb{E} [\ln q(z)]$ s.t. $\mathbf{0} = \int \mathbf{R}^{e}(z)q(z)dz$. \Rightarrow non parametric MLE (Owen (2001)) of the R-N measure.
- to recover M_t via the Radon-Nikodym derivative simply note that the MLE of p is $p(\mathbf{z}_t) = 1/T \ \forall t = 1, ..., T$

Note: similar argument for $D\left(\mathbb{Q}||\mathbb{P} ight)$

Ghosh, Julliard and Taylor (2014)

Information Factor

Change of Measure and Relative Entropy Why Entropy?

Why Minimal Entropy?

- I: <u>Maximum Likelihood</u> (i.e. not only an Extremum Estimator):
 - Let z_t be a sufficient statistic for the time t state of the economy, then

 $M: z \to \mathbb{R}_+$ and $\mathbf{R}^e: z \to \mathbb{R}^N \Rightarrow M_t \equiv M(z_t)$ and $\mathbf{R}^e_t \equiv \mathbf{R}^e(z_t)$

- Moreover, defining with p and q the pdf's of \mathbb{P} and \mathbb{Q} $D(\mathbb{P}||\mathbb{Q}) \equiv \int \ln\left(\frac{p(\mathbf{z})}{q(\mathbf{z})}\right) p(\mathbf{z}) d\mathbf{z} \equiv \mathbb{E}\left[\ln p(\mathbf{z})\right] - \mathbb{E}\left[\ln q(\mathbf{z})\right]$
- Hence, $\hat{\mathbb{Q}}$ solves: $\arg \max \mathbb{E} [\ln q(z)]$ s.t. $\mathbf{0} = \int \mathbf{R}^{e}(z)q(z)dz$. \Rightarrow non parametric MLE (Owen (2001)) of the R-N measure.
- to recover M_t via the Radon-Nikodym derivative simply note that the MLE of p is $p(\mathbf{z}_t) = 1/T \ \forall t = 1, ..., T$

Note: similar argument for $D\left(\mathbb{Q}||\mathbb{P} ight)$

Ghosh, Julliard and Taylor (2014)

Information Factor

Q

Change of Measure and Relative Entropy Why Entropy?

Why Minimal Entropy?

- I: <u>Maximum Likelihood</u> (i.e. not only an Extremum Estimator):
 - Let z_t be a sufficient statistic for the time t state of the economy, then

 $M: z \to \mathbb{R}_+$ and $\mathbf{R}^e: z \to \mathbb{R}^N \Rightarrow M_t \equiv M(z_t)$ and $\mathbf{R}^e_t \equiv \mathbf{R}^e(z_t)$

• Moreover, defining with p and q the pdf's of $\mathbb P$ and $\mathbb Q$

$$D\left(\mathbb{P}||\mathbb{Q}
ight)\equiv\int \ln\left(rac{p(\mathbf{z})}{q(\mathbf{z})}
ight)p(\mathbf{z})d\mathbf{z}\equiv\mathbb{E}\left[\ln p(\mathbf{z})
ight]-\mathbb{E}\left[\ln q(\mathbf{z})
ight]$$

- Hence, $\hat{\mathbb{Q}}$ solves: $\arg \max \mathbb{E} [\ln q(\mathbf{z})]$ s.t. $\mathbf{0} = \int \mathbf{R}^{e}(\mathbf{z})q(\mathbf{z})d\mathbf{z}$. \Rightarrow non parametric MLE (Owen (2001)) of the R-N measure.
- to recover M_t via the Radon-Nikodym derivative simply note that the MLE of p is $p(\mathbf{z}_t) = 1/T \ \forall t = 1, ..., T$

Note: similar argument for $D\left(\mathbb{Q}||\mathbb{I}
ight)$

Ghosh, Julliard and Taylor (2014)

Information Factor

Q

Change of Measure and Relative Entropy Why Entropy?

Why Minimal Entropy?

- I: <u>Maximum Likelihood</u> (i.e. not only an Extremum Estimator):
 - Let z_t be a sufficient statistic for the time t state of the economy, then

 $M: z \to \mathbb{R}_+$ and $\mathbf{R}^e: z \to \mathbb{R}^N \Rightarrow M_t \equiv M(z_t)$ and $\mathbf{R}^e_t \equiv \mathbf{R}^e(z_t)$

• Moreover, defining with p and q the pdf's of $\mathbb P$ and $\mathbb Q$

$$D\left(\mathbb{P}||\mathbb{Q}
ight)\equiv\int \ln\left(rac{p(\mathsf{z})}{q(\mathsf{z})}
ight)p(\mathsf{z})d\mathsf{z}\equiv\mathbb{E}\left[\ln p(\mathsf{z})
ight]-\mathbb{E}\left[\ln q(\mathsf{z})
ight]$$

- Hence, $\hat{\mathbb{Q}}$ solves: $\arg \max \mathbb{E} [\ln q(\mathbf{z})]$ s.t. $\mathbf{0} = \int \mathbf{R}^{e}(\mathbf{z})q(\mathbf{z})d\mathbf{z}$. \Rightarrow non parametric MLE (Owen (2001)) of the R-N measure.
- to recover M_t via the Radon-Nikodym derivative simply note that the MLE of p is p(z_t) = 1/T ∀t = 1,...,T

Note: similar argument for $D\left(\mathbb{Q}||\mathbb{P}
ight)$

Change of Measure and Relative Entropy Why Entropy?

Why Minimal Entropy?

- I: <u>Maximum Likelihood</u> (i.e. not only an Extremum Estimator):
 - Let z_t be a sufficient statistic for the time t state of the economy, then

 $M: z \to \mathbb{R}_+$ and $\mathbf{R}^e: z \to \mathbb{R}^N \Rightarrow M_t \equiv M(z_t)$ and $\mathbf{R}^e_t \equiv \mathbf{R}^e(z_t)$

• Moreover, defining with p and q the pdf's of $\mathbb P$ and $\mathbb Q$

$$D\left(\mathbb{P}||\mathbb{Q}
ight)\equiv\int \ln\left(rac{p(\mathsf{z})}{q(\mathsf{z})}
ight)p(\mathsf{z})d\mathsf{z}\equiv\mathbb{E}\left[\ln p(\mathsf{z})
ight]-\mathbb{E}\left[\ln q(\mathsf{z})
ight]$$

- Hence, $\hat{\mathbb{Q}}$ solves: $\arg \max \mathbb{E} [\ln q(\mathbf{z})]$ s.t. $\mathbf{0} = \int \mathbf{R}^{e}(\mathbf{z})q(\mathbf{z})d\mathbf{z}$. \Rightarrow non parametric MLE (Owen (2001)) of the R-N measure.
- to recover M_t via the Radon-Nikodym derivative simply note that the MLE of p is p(z_t) = 1/T ∀t = 1,...,T

Note: similar argument for $D(\mathbb{Q}||\mathbb{P})$

Change of Measure and Relative Entropy Why Entropy?

Why Minimal Entropy? cont'd

- II: Naturally imposes non negativity of the pricing kernel
- III: Can choose any number of assets and don't need a decomposition of *M* into short and long run components (cf. Alvarez-Jermann), nor it requires a continuum of option data (cf. Ross)
- IV: Occam's razor: $\hat{\mathbb{Q}}$ adds to the physical measure the minimum amount of extra information needed to price assets.
- V: Appropriate for capturing tail risk (Brown and Smith (1986))
- VI: Straightforward to add conditional information (i.e. scale the moment function) and/or orthogonality restrictions.
- VII: Simple to construct confidence bands (both asymptotic and by "clever" bootstrap)

イロト 不得 トイヨト イヨト 二日

Change of Measure and Relative Entropy Why Entropy?

VIII: Numerically simple via **duality** (e.g. Csiszar (1975))

If $\hat{\mathbb{Q}} = \arg \min D(\mathbb{P}||\mathbb{Q})$, we have that (up to a scale)

$$\hat{M}_t = M(\hat{ heta}, \mathbf{R}_t^e) = rac{1}{T(1+\hat{ heta}'\mathbf{R}_t^e)}, \quad orall t$$
 (1)

where $\hat{\theta} \in \mathbb{R}^{N}$ is the Lagrange multiplier that solves the dual:

$$\hat{\theta} = \arg\min_{\theta} - \sum_{t=1}^{T} \log(1 + \theta' \mathbf{R}_t^e),$$
(2)

3 Similarly,
$$\underline{if \ \hat{\mathbb{Q}} = \arg \min \ D\left(\mathbb{Q}||\mathbb{P}\right)}_{\hat{M}_t}$$
, (up to a scale)
 $\hat{M}_t = M(\hat{\theta}, \mathbb{R}^e_t) = \frac{e^{\hat{\theta}' \mathbb{R}^e_t}}{\sum\limits_{t=1}^T e^{\hat{\theta}' \mathbb{R}^e_t}}, \quad \forall t$ (3)

where $\hat{\theta} \in \mathbb{R}^N$ is the Lagrange multiplier that solves the dual:

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{T} \sum_{t=1}^{T} e^{\theta' \mathbf{R}_{t}^{e}}, \qquad (4)$$

11/28

Ghosh, Julliard and Taylor (2014)

Information Factor

Change of Measure and Relative Entropy Why Entropy?

VIII: Numerically simple via **duality** (e.g. Csiszar (1975)) If $\hat{\mathbb{Q}} = \arg \min D(\mathbb{P}||\mathbb{Q})$, we have that (up to a scale)

$$\hat{M}_t = M(\hat{\theta}, \mathbf{R}_t^e) = rac{1}{T(1+\hat{ heta'}\mathbf{R}_t^e)}, \quad \forall t$$
 (1)

where $\hat{\theta} \in \mathbb{R}^{N}$ is the Lagrange multiplier that solves the dual:

$$\hat{\theta} = \arg\min_{\theta} - \sum_{t=1}^{T} \log(1 + \theta' \mathbf{R}_t^e), \qquad (2)$$

3 Similarly, if
$$\hat{\mathbb{Q}} = \arg\min D(\mathbb{Q}||\mathbb{P})$$
, (up to a scale)
$$\hat{M}_t = M(\hat{\theta}, \mathbb{R}_t^e) = \frac{e^{\hat{\theta}' \mathbb{R}_t^e}}{\sum\limits_{t=1}^T e^{\hat{\theta}' \mathbb{R}_t^e}}, \quad \forall t$$
(3)

where $\hat{\theta} \in \mathbb{R}^N$ is the Lagrange multiplier that solves the dual:

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{T} \sum_{t=1}^{T} e^{\theta' \mathbf{R}_{t}^{e}}, \qquad (4)$$

11/28

Ghosh, Julliard and Taylor (2014)

Information Factor

Change of Measure and Relative Entropy Why Entropy?

VIII: Numerically simple via **duality** (e.g. Csiszar (1975)) **1** $\int \hat{\mathbb{Q}} = \arg \min D(\mathbb{P}||\mathbb{Q})$, we have that (up to a scale)

$$\hat{M}_t = M(\hat{\theta}, \mathbf{R}_t^e) = rac{1}{T(1+\hat{ heta'}\mathbf{R}_t^e)}, \quad \forall t$$
 (1)

where $\hat{\theta} \in \mathbb{R}^{N}$ is the Lagrange multiplier that solves the dual:

$$\hat{\theta} = \arg\min_{\theta} - \sum_{t=1}^{T} \log(1 + \theta' \mathbf{R}_{t}^{e}), \qquad (2)$$

Similarly, if
$$\hat{\mathbb{Q}} = \arg \min D(\mathbb{Q}||\mathbb{P})$$
, (up to a scale)
$$\hat{M}_t = M(\hat{\theta}, \mathbb{R}_t^e) = \frac{e^{\hat{\theta}' \mathbb{R}_t^e}}{\sum\limits_{t=1}^T e^{\hat{\theta}' \mathbb{R}_t^e}}, \quad \forall t$$
(3)

where $\hat{\theta} \in \mathbb{R}^{N}$ is the Lagrange multiplier that solves the dual:

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{T} \sum_{t=1}^{T} e^{\theta' \mathbf{R}_{t}^{e}}, \qquad (4)$$

Ghosh, Julliard and Taylor (2014) Information Factor

Change of Measure and Relative Entropy Why Entropy?

Out-of-Sample Pricing Factors

Out-of-Sample I-SDF

- Divide data $\mathbf{R}_t^e \in \mathbb{R}^N$, t = 0, ..., T 1, into rolling subsamples of length \overline{T} , final date T_i , and constant $T_{i+1} T_i$, i = 1, 2, ...
- ② Estimate θ_{T_i} over each *i*-th sample with data sampled at $t = T_i + 1 \overline{T}, ..., T_i$
- **③** O-o-S I-SDF: $M(\hat{ heta}_{T_i}, \mathbf{R}^e_t), t = T_i + 1, ..., T_{i+1}$

Out-of-Sample I-Portfolio

- $0 \ \forall i \text{ sub-sample set: } \hat{M}_{i,t} = M(\hat{\theta}_{\mathcal{T}_i}, \mathsf{R}^e_t), \ t = T_i + 1 \bar{\mathcal{T}}, ..., T_i$
- **@** Project $\hat{M}_{i,t}$ on the space of excess returns to obtain the portfolio weights $\omega_{T_i} \in \mathbb{R}^N$ (normalised to sum to 1)
- **3** O-o-S I-Portfolio: $R_t^{IP} = \omega'_{T_i} \mathbf{R}_t^e, t = T_i + 1, ..., T_{i+1}$

Implementation: \overline{T} = half sample, and $T_{i+1} - T_i = 1$ year (Lyne), $T_{i+1} - T_i = 1$

Change of Measure and Relative Entropy Why Entropy?

Out-of-Sample Pricing Factors

Out-of-Sample I-SDF

- Divide data $\mathbf{R}_t^e \in \mathbb{R}^N$, t = 0, ..., T 1, into rolling subsamples of length \overline{T} , final date T_i , and constant $T_{i+1} T_i$, i = 1, 2, ...
- **2** Estimate θ_{T_i} over each *i*-th sample with data sampled at $t = T_i + 1 \overline{T}, ..., T_i$

Out-of-Sample I-Portfolio

- $0 \ \forall i \text{ sub-sample set: } \hat{M}_{i,t} = M(\hat{\theta}_{T_i}, \mathbf{R}^e_t), \ t = T_i + 1 \bar{T}, ..., T_i$
- **②** Project $\hat{M}_{i,t}$ on the space of excess returns to obtain the portfolio weights $\omega_{T_i} \in \mathbb{R}^N$ (normalised to sum to 1)
- **3** O-o-S I-Portfolio: $R_t^{IP} = \omega'_{T_i} \mathbf{R}_t^e$, $t = T_i + 1, ..., T_{i+1}$

Implementation: \overline{T} = half sample, and $T_{i+1} - T_i = 1$ year (lune).

Change of Measure and Relative Entropy Why Entropy?

Out-of-Sample Pricing Factors

Out-of-Sample I-SDF

- **1** Divide data $\mathbf{R}_t^e \in \mathbb{R}^N$, t = 0, ..., T 1, into rolling subsamples of length \overline{T} , final date T_i , and constant $T_{i+1} - T_i$, i = 1, 2, ...
- 2 Estimate θ_{T_i} over each *i*-th sample with data sampled at $t = T_i + 1 - T_1 \dots T_i$
- **3** O-o-S I-SDF: $M(\hat{\theta}_{T_i}, \mathbf{R}_t^e), t = T_i + 1, ..., T_{i+1}$

Out-of-Sample I-Portfolio

- **1** $\forall i$ sub-sample set: $\hat{M}_{i,t} = M(\hat{\theta}_{T_i}, \mathbf{R}_t^e), t = T_i + 1 \bar{T}, ..., T_i$
- **2** Project $\hat{M}_{i,t}$ on the space of excess returns to obtain the portfolio weights $\omega_{T_i} \in \mathbb{R}^N$ (normalised to sum to 1)
- **3** O-o-S I-Portfolio: $R_t^{IP} = \omega'_T \mathbf{R}_t^e$, $t = T_i + 1, ..., T_{i+1}$

Implementation: \overline{T} = half sample, and $T_{i+1} - T_i = 1$ year (June).

Change of Measure and Relative Entropy Why Entropy?

Out-of-Sample Pricing Factors

Out-of-Sample I-SDF

- Divide data $\mathbf{R}_t^e \in \mathbb{R}^N$, t = 0, ..., T 1, into rolling subsamples of length \overline{T} , final date T_i , and constant $T_{i+1} T_i$, i = 1, 2, ...
- **2** Estimate θ_{T_i} over each *i*-th sample with data sampled at $t = T_i + 1 \overline{T}, ..., T_i$

Out-of-Sample I-Portfolio

- **9** $\forall i \text{ sub-sample set: } \hat{M}_{i,t} = M(\hat{\theta}_{T_i}, \mathbf{R}_t^e), t = T_i + 1 \bar{T}, ..., T_i$
- **2** Project $\hat{M}_{i,t}$ on the space of excess returns to obtain the portfolio weights $\omega_{T_i} \in \mathbb{R}^N$ (normalised to sum to 1)
- **③** O-o-S I-Portfolio: $R_t^{IP} = \omega'_{T_i} \mathbf{R}_t^e, t = T_i + 1, ..., T_{i+1}$

Implementation: \overline{T} = half sample, and $T_{i+1} - T_i = 1$ year (June).

 $\begin{array}{l} {\rm Cross-Sectional\ Pricing}\\ {\rm The\ Information\ Portfolio}\\ {\rm Portable\ }\alpha \end{array}$

Outline

1 The Big Picture

- Introduction
- (Other) Closely Related Literature
- 2 Methodology: An Information Theoretic Approach
 - Change of Measure and Relative EntropyWhy Entropy?

3 Empirical Analysis

- Cross-Sectional Pricing
- The Information Portfolio
- Portable α : an "Information Anomaly"

4 Conclusion

Appendix

イロト イポト イヨト イヨト

 $\begin{array}{l} {\rm Cross-Sectional\ Pricing}\\ {\rm The\ Information\ Portfolio}\\ {\rm Portable\ } \alpha \end{array}$

Cross-Sectional Pricing

Table 1: 25 FF Portfolios, 1929:04-2010:12

const.	λ_{IP}	$\lambda_{\textit{sdf}}$	λ_{Rm}	λ_{SMB}	λ_{HML}	\overline{R}_{OLS}^2	\overline{R}_{GLS}^2	T^2	q
				Pan	el A: Mo	nthly			
0.003 (5.73)		-0.341 (-7.06)				67.0 [57.4,100]	56.6 [54.4,100]	37.5 (0.182)	0.077 [0.0,0.056]
0.003 (5.70)	0.023 (7.32)					68.6 [52.1,100]	59.6 [75.0,100]	37.10 (0.096)	0.072 [0.0,0.064]
0.011 (3.40)			-0.004 (-1.41)			3.97 [-3.82,59.8]	28.8 [19.4,40.9]	71.64 (0.000)	0.128 [0.045,0.145
0.011 (2.50)			-0.006 (-1.53)	0.002 (3.86)	0.004 (6.87)	71.3 [48.9,89.2]	40.9 [31.4,82.8]	51.46 (0.003)	0.096 [0.040,0.100
0.004 (1.20)	0.025 (5.26)		0.0004 (0.132)	0.003 (6.75)	0.004 (8.48)	86.1 [,]	62.2 [,]	29.25 (0.083)	0.058 [,]
				Pane	el B: Qua	irterly			
0.028 (11.33)		-5.46 (-3.13)				26.8 [4.38,100]	30.8 [16.9,69.5]	41.31 (0.469)	0.332 [0.0,0.438]
0.002 (1.29)	0.135 (11.17)					83.7 [86.9,100]	51.6 [52.2,100]	28.77 (0.533)	0.227 [0.0,0.164]
0.024 (2.79)			-0.002 (-0.308)			-3.92 [-4.33,25.7]	8.50 [4.88,11.9]	80.90 (0.000)	0.431 [0.14,0.42]
0.028 (2.19)			-0.015 (-1.15)	0.007 (4.95)	0.013 (7.20)	74.7 [0.52,0.94]	17.7 [0.018,0.56]	59.34 (0.001)	0.351 [0.066,0.37]
0.005 (0.403)	0.108 (3.71)		$\underset{(0.768)}{0.010}$	0.008 (6.60)	0.012 (7.85)	83.4 [,]	46.5 [,]	31.06 (0.054)	0.217 [,]
						< □			≣ ∽)α(*

14/28

 $\begin{array}{l} {\rm Cross-Sectional\ Pricing}\\ {\rm The\ Information\ Portfolio}\\ {\rm Portable\ } \alpha \end{array}$

Cross-Sectional Pricing cont'd

Table 2: 10 Momentum Portfolios, 1929:04-2010:12

const.	λ_{IP}	$\lambda_{\textit{sdf}}$	λ_{Rm}	λ_{SMB}	λ_{HML}	λ_{MOM}	\overline{R}^{2}_{OLS}	\overline{R}_{GLS}^2	T^2	q
					Panel A	: Monthly				
0.004 (9.99)		-0.27 (-9.16)					90.2 [78.9,100]	68.1 [56.8,100]	12.37 (0.345)	0.024 [0.0,0.031]
0.002 (7.80) 0.014 (2.04)	0.034 (13.66)		-0.009 (-1.45)				95.4 [92.0,100] 10.9 [-12.4,60.1]	83.6 [84.3,100] -2.0 [-11.7,16.9]	6.37 (0.657) 40.15 (0.000)	0.012 [0.0,0.015] 0.074 [0.026,0.117
0.022 (1.27)			-0.013 (-0.75)	-0.011 (-0.61)	-0.032 (-1.18)	0.007 (6.02)	78.9 [32.9,100]	2.59 [-73.1,98.4]	8.81 (0.399)	0.044 [0.0,0.823]
0.003 (0.42)	0.039 (4.36)		0.004 (0.60)	-0.005 (-0.80)	-0.015 (-1.60)	0.006 (14.64)	97.7 [,]	82.1 [,]	2.61 (0.625)	0.006 [,]
					Panel B:	Quarterly				
0.008 (6.39)		-1.07 (-7.93)					87.3 [67.9,100]	75.2 [72.2,100]	8.12 (0.529)	0.056 [0.0,0.080]
0.006 (5.60) 0.038 (2.40)	0.107 (9.90)		-0.024 (-1.59)				95.4 [86.3,100] 14.4 [-11.4,81.2]	78.6 [76.9,100] -6.49 [-12.5,13.7]	7.36 (0.581) 39.55 (0.001)	0.047 [0.0,0.048] 0.226 [0.077,0.381
0.061 (1.08)			-0.050 (-0.83)	0.038 (1.03)	0.021 (0.63)	0.022 (5.46)	75.4 [20.9,96.5]	1.56 [-73.6,81.2]	9.55 (0.187)	0.131 [0.0,1.346]
0.036 (2.43)	0.084 (3.69)		-0.024 (-1.54)	0.032 (3.28)	0.0005 (0.05)	0.021 (20.80)	98.4 [,]	86.7 [,]	1.35 (0.853)	0.014 [,]

15/28

(日) (四) (三) (三)

 $\begin{array}{l} {\rm Cross-Sectional\ Pricing}\\ {\rm The\ Information\ Portfolio}\\ {\rm Portable\ }\alpha \end{array}$

Cross-Sectional Pricing cont'd

Table 3: 25 Portfolios Formed on Long-Term Reversal and Size, 1929:04-2010:12										
const.	λ_{IP}	$\lambda_{\textit{sdf}}$	λ_{Rm}	λ_{SMB}	λ_{HML}	\overline{R}_{OLS}^2	\overline{R}_{GLS}^2	T^2	q	
				Pan	el A: Mo	nthly				
0.006 (7.06)		-0.22 (-2.18)				13.5 [-0.83,100]	61.5 [56.4,100]	25.07 (0.583)	0.047 [0.0,0.036]	
0.002 (2.13)	0.024 (7.98)					72.3 [66.4,100]	68.0 [71.0,100]	18.35 (0.844)	0.037 [0.0,0.007]	
0.005 (1.38)			0.002 (0.78)			-1.6 [-4.10,44.7]	10.1 [1.83,21.7]	58.14 (0.002)	0.103 [0.028,0.111]	
0.002 (0.68)			0.002 (0.93)	0.001 (1.62)	0.007 (4.96)	74.3 [56.7,100]	26.1 [12.4,100]	40.37 (0.018)	0.077 [0.01,0.070]	
-0.002 (-0.86)	0.022 (5.50)		0.006 (2.77)	0.003 (3.99)	0.004 (3.39)	84.5 [,]	66.4 [,]	16.69 (0.673)	0.033 [,]	
				Pane	el B: Qua	rterly				
0.023 (11.80)		-0.33 (-0.300)				-3.94 [,]	27.2 [,]	54.50 (0.000)	0.291 [,]	
0.008 (3.13)	0.075 (5.71)					56.8 [39.0,100]	56.5 [56.9,100]	23.96 (0.735)	0.167 [0.0,0.064]	
0.008 (1.04)			0.013 (1.81)			8.7 [,]	1.33 [,]	68.46 (0.000)	0.372 [,]	
$0.006 \\ (0.651)$			0.009 (1.03)	0.005 (2.59)	0.020 (4.76)	77.8 [,]	11.96 [,]	48.86 (0.000)	0.301 [,]	
0.002 (0.329)	0.070 (5.28)		0.012 (1.80)	0.011 (5.13)	0.007 (1.47)	86.7 [,]	53.0 [,]	22.61 (0.309)	0.153 [,]	
						۹ 🗆		È K K ≣ K	E	

16/28

 $\begin{array}{l} {\rm Cross-Sectional\ Pricing}\\ {\rm The\ Information\ Portfolio}\\ {\rm Portable\ } \alpha \end{array}$

Cross-Sectional Pricing cont'd

Table 4:	Small, La	arge, Grow	vth, Value,	Winners	, Losers, 1	10 Industry			!	
const.	λ_{IP}	λ_{sdf}	λ_{Rm}	λ_{SMB}	λ_{HML}	λ_{MOM}	\overline{R}^2_{OLS}	\overline{R}_{GLS}^2	T^2	q
				Pane	I A: Mont	hly				
0.001 (2.49)		-1.12 (-16.7)					94.9 [,]	88.0 [,]	5.39 (0.980)	0.013 [,]
0.003 (7.45)	0.027 (8.62)						83.0 [,]	84.2 [,]	9.89 (0.770)	0.019 [,]
0.007 (2.02)			-0.002 (-0.70)				-3.5 [,]	-1.17 [,]	62.76 (0.000)	0.112 [,]
0.003 (1.25)			0.002 (1.09)	0.002 (2.42)	0.002 (1.92)	0.009 (8.78)	84.8 [,]	40.3 [,]	27.23 (0.004)	0.052 [,]
-0.003 (-1.58)	0.035 (8.10)		0.007 (4.45)	0.003 (5.44)	0.0003 (0.51)	0.008 (10.65)	94.7 [,]	84.8 [,]	5.73 (0.838)	0.012 [,]
				Panel	B: Quart	erly				
0.014 (12.44)		-3.88 (-6.92)					75.8 [,]	60.9 [,]	$17.15 \\ (0.248)$	0.145 [,]
0.009 (5.81)	$\underset{(6.61)}{0.100}$						74.0 [,]	79.9 [,]	10.85 (0.698)	0.077 [,]
0.021 (2.10)			-0.005 (-0.52)				-5.1 [,]	0.73 [,]	67.17 (0.000)	0.358 [,]
0.012 (1.47)			0.004 (0.45)	0.006 (2.50)	0.005 (2.01)	0.027 (7.97)	82.9 [,]	37.3 [,]	27.86 (0.003)	0.178 [,]
-0.002 (-0.26)	0.107 (4.62)		0.017 (2.16)	0.008 (3.89)	0.002 (1.10)	0.024 (8.43)	89.6 [,]	75.8 [,]	8.27 (0.602)	0.062 [,]
						4		► < ≣ ►	문 문	4) Q (4

17/28

Information Factor

 $\begin{array}{l} {\rm Cross-Sectional\ Pricing}\\ {\rm The\ Information\ Portfolio}\\ {\rm Portable\ } \alpha \end{array}$

Cross-Sectional Pricing cont'd

Table 5	Table 5: 30 Industry Portfolios, 1929:04-2010:12										
const.	λ_{IP}	$\lambda_{\textit{sdf}}$	λ_{Rm}	λ_{SMB}	λ_{HML}	\overline{R}_{OLS}^2	\overline{R}_{GLS}^2	T^2	q		
				Panel A: N	/lonthly						
0.002 (2.58)		-0.15 (-3.97)				33.8 [,]	50.1 [,]	12.61 (0.994)	0.023 [,]		
0.001 (1.42)	0.022 (5.74)					52.5 [,]	65.6 [,]	8.56 (1.00)	0.016 [,]		
0.006 (3.55)			-0.0001 (-0.12)			-3.52 [,]	-2.30 [,]	26.69 (0.535)	0.047 [,]		
0.006 (2.46)			-0.001 (-0.36)	0.0004 (0.26)	-0.001 (-0.75)	-8.33 [,]	-7.32 [,]	26.00 (0.463)	0.046 [,]		
0.000 (0.023)	0.025 (5.79)		0.005 (2.93)	-0.0001 (-0.14)	-0.001 (-1.07)	60.4 [,]	64.6 [,]	7.55 (1.00)	0.015 [,]		
				Panel B: Q	uarterly						
0.011 (2.93)		-1.72 (-1.64)				5.55 [,]	31.4 [,]	23.49 (0.708)	0.133 [,]		
0.010 (3.48)	0.043 (2.66)					17.3 [,]	39.9 [,]	20.66 (0.839)	0.116 [,]		
0.017 (3.55)			0.001 (0.127)			-3.51 [,]	2.68 [,]	35.16 (0.165)	0.187 [,]		
0.023 (2.51)			-0.006 (-0.62)	0.003 (0.71)	-0.002 (-0.43)	-8.40 [,]	-1.64 [,]	33.57 (0.146)	0.181 [,]		
0.020 (2.58)	0.042 (2.42)		-0.003 (-0.350)	0.006 (1.81)	-0.002 (-0.562)	26.6 [,]	42.9 [,]	$\underset{(0.906)}{16.29}$	0.098 [,]		
						4 [] > 4		- • E • -	<u> </u>		

Cross-Sectional Pricing The Information Portfolio Portable α

The Information Portfolio

Table 8: Summary Statistics of Information Portfolio & Returns

Assets	Mean	Vol	SR	Skew	Kurt	CEQ	Ret-gain
		Par	nel A: M	onthly			
Market - Risk Free	0.004	0.045	0.091	-0.567	5.028	0.003	
Value - Growth	0.004	0.029	0.139	-0.034	5.440	0.004	
Momentum Factor	0.007	0.044	0.164	-1.419	13.65	0.006	
R ^{IP} (FF25)	0.021 (0.007)	0.073 (0.051)	0.288 (0.128)	0.384 (-0.575)	5.541 (5.589)	0.018 (0.006)	0.008
(10 Momentum)	0.030 (0.004)	0.127 (0.048)	0.235 (0.085)	-0.352 (-0.326)	8.022 (4.793)	0.022 (0.003)	0.007
R ^{IP} (25 L-T Reversal & Size)	0.013 (0.007)	0.064 (0.051)	0.206 (0.137)	-0.212	$5.111 \\ (5.865)$	0.011 (0.006)	0.003
<i>R^{IP}</i> (S, B, G, V, W, L, 10 Ind.)	0.027 (0.005)	0.088 (0.046)	0.306 (0.106)	-0.679 (-0.490)	6.180 (4.953)	0.023 (0.004)	0.009
R^{IP} (30 Industry)	0.002 (0.005)	0.083 (0.048)	0.018 (0.112)	0.040 (-0.522)	6.318 (5.708)	-0.001 (0.004)	-0.004

Note: 1/N portfolio in parenthesis.

19/28

≣ Ø

ヘロア 人間 アメヨアメヨア

Cross-Sectional Pricing The Information Portfolio Portable α

The Information Portfolio

Table 8: Summary Statistics of Information Portfolio & Returns

Assets	Mean	Vol	SR	Skew	Kurt	CEQ	Ret-gain
		Pan	el B: <mark>Qu</mark>	arterly			
Market - Risk Free	0.013	0.087	0.150	-0.435	3.635	0.009	
Value - Growth	0.012	0.060	0.204	0.109	4.754	0.010	
Momentum Factor	0.020	0.081	0.254	-1.411	10.13	0.017	
R ^{IP} (FF25)	0.080 (0.021)	0.194 (0.103)	0.413 (0.207)	0.410 (-0.183)	3.955 (3.576)	0.061 (0.016)	0.022
(10 Momentum)	0.085 (0.013)	0.239 (0.093)	0.354 (0.143)	-0.090 (-0.231)	5.295 (3.805)	0.056 (0.009)	0.020
R ^{IP} (25 L-T Reversal & Size)	0.042 (0.023)	0.134 (0.104)	0.313 (0.220)	-0.168	3.833 (3.865)	0.033 (0.018)	0.010
<i>R^{IP}</i> (S, B, G, V, W, L, 10 Ind.)	0.083 (0.016)	0.173 (0.090)	0.480 (0.175)	0.181 (-0.315)	3.463 (3.794)	0.068 (0.012)	0.027
R^{IP} (30 Industry)	0.007 (0.017)	0.180 (0.093)	0.041 (0.186)	0.029 (-0.298)	2.934 (3.942)	-0.009 (0.013)	-0.013

Note: 1/N portfolio in parenthesis.

20/28

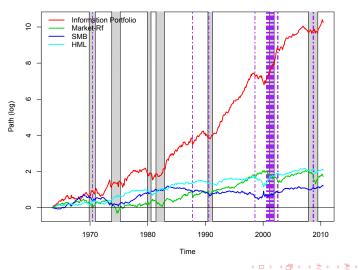
≣ ⊘

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $\begin{array}{l} {\rm Cross-Sectional\ Pricing} \\ {\rm The\ Information\ Portfolio} \\ {\rm Portable\ } \alpha \end{array}$

R^{IP} Cumulated Returns

Long-Short Strategy

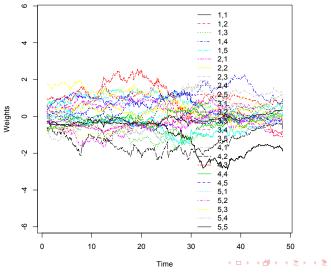


Ghosh, Julliard and Taylor (2014)

Cross-Sectional Pricing The Information Portfolio Portable α

R^{IP} portfolio weights

Time Series of Portfolio Weights



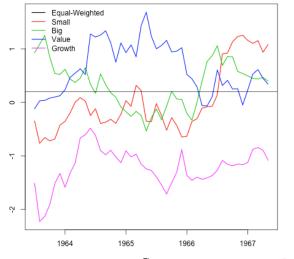
Ghosh, Julliard and Taylor (2014)

Information Factor

Cross-Sectional Pricing The Information Portfolio Portable α

R^{IP} : S, M , V and G aggregated weights

Monthly Information Portfolio Weights Extracted from FF25



Ghosh, Julliard and Taylor (2014) Information Factor

Cross-Sectional Pricing The Information Portfolio Portable α

Portable α : an "Information Anomaly"

Table 7: R [#]	$^{\circ}lpha$ With	Respect to	FF and	Momentum	Factors,	1929:04-2010:12
-------------------------	---------------------	------------	--------	----------	----------	-----------------

Assets	lpha (%)	$\beta_{\it Rm}$	$\beta_{\rm SMB}$	β_{HML}	$eta_{{\it MOM}}$	\overline{R}_{OLS}^2	Info-Ratio				
Panel A: Monthly											
FF25	$\underset{(4.89)}{1.31}$	0.47 (7.44)	0.21 (2.41)	1.30 (13.82)		26.9	0.211				
10 Momentum	1.37 (3.06)	0.94 (9.03)	-0.30 (-2.09)	0.26 (1.67)	1.67 (16.52)	36.1	0.135				
25 L-T Reversal & Size	0.69 (2.79)	0.40 (6.92)	0.35 (4.39)	0.92 (10.56)		20.7	0.121				
S, B, G, V, W, L, 10 Ind.	0.93 (3.28)	0.59 (9.00)	0.35 (3.90)	1.28 (12.87)	1.25 (19.70)	46.6	0.145				
30 Industry	0.29 (0.96)	0.81 (11.43)	-0.87 (-8.79)	-0.59 (-5.57)		28.3	0.041				

<u>Annualised α: 3.5%-17.7%</u>

(日) (四) (三) (三)

Cross-Sectional Pricing The Information Portfolio Portable α

Portable α : an "Information Anomaly" cont'd

Table 7: $R^{IP} \alpha$ With Respect to FF and Momentum Factors, 1929:04-2010:12

Assets	α (%)	$\beta_{\it Rm}$	$\beta_{\it SMB}$	β_{HML}	β_{MOM}	\overline{R}_{OLS}^2	Info-Ratio				
Panel B: Quarterly											
FF25	5.49 (4.01)	0.59 (3.29)	0.43 (1.72)	1.12 (4.85)		15.4	0.310				
10 Momentum	2.63 (1.77)	1.20 (6.52)	-0.21 (-0.82)	0.43 (1.76)	$\underset{(10.76)}{1.92}$	42.6	0.147				
25 L-T Reversal & Size	2.39 (2.57)	0.50 (4.16)	0.01 (0.06)	0.93 (5.94)		18.0	0.199				
S, B, G, V, W, L, 10 Ind.	3.21 (2.77)	0.67 (4.70)	0.29 (1.42)	1.16 (6.15)	1.23 (8.89)	33.6	0.230				
30 Industry	1.16 (1.00)	1.02 (6.73)	-1.01 (-4.72)	-0.66 (-3.37)		29.1	0.077				

<u>Annualised α: 4.7%-23.8%</u>

イロト イヨト イヨト イヨト

Cross-Sectional Pricing The Information Portfolio Portable α

Why does it work?

- The maximum Sharpe Ratio portfolio must price the cross-section of assets (since it pins down the Capital Allocation Line).
- Standard methods for forecasting this portfolio use the <u>asset side</u> i.e. tangency of the Efficient Frontier and the Capital Allocation Line
- ⇒ They don't work empirically due to measurement error on N + N(N + 1)/2 parameters (mean plus covariance matrix) e.g. DeMiguel, Garlappi, Uppal (2007)

E.g. : with N=25 this method requires 350 parameters!

• Our method uses the <u>SDF side</u> i.e. tangency of the Indifference Curve to the Capital Allocation Line

 \Rightarrow need to estimate only N parameters of the dual solution.

イロト イヨト イヨト イヨト 三日

Cross-Sectional Pricing The Information Portfolio Portable α

Why does it work?

- The maximum Sharpe Ratio portfolio must price the cross-section of assets (since it pins down the Capital Allocation Line).
- Standard methods for forecasting this portfolio use the <u>asset side</u> i.e. tangency of the Efficient Frontier and the Capital Allocation Line
- ⇒ They don't work empirically due to measurement error on N + N(N + 1)/2 parameters (mean plus covariance matrix) e.g. DeMiguel, Garlappi, Uppal (2007)

E.g. : with N=25 this method requires 350 parameters!

• Our method uses the <u>SDF side</u> i.e. tangency of the Indifference Curve to the Capital Allocation Line

 \Rightarrow need to estimate only N parameters of the dual solution.

イロト イヨト イヨト イヨト 三日

Cross-Sectional Pricing The Information Portfolio Portable α

Why does it work?

- The maximum Sharpe Ratio portfolio must price the cross-section of assets (since it pins down the Capital Allocation Line).
- Standard methods for forecasting this portfolio use the <u>asset side</u> i.e. tangency of the Efficient Frontier and the Capital Allocation Line
- ⇒ They don't work empirically due to measurement error on N + N(N + 1)/2 parameters (mean plus covariance matrix) e.g. DeMiguel, Garlappi, Uppal (2007)

E.g. : with N=25 this method requires 350 parameters!

• Our method uses the <u>SDF side</u> i.e. tangency of the Indifference Curve to the Capital Allocation Line

 \Rightarrow need to estimate only N parameters of the dual solution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cross-Sectional Pricing The Information Portfolio Portable α

Why does it work?

- The maximum Sharpe Ratio portfolio must price the cross-section of assets (since it pins down the Capital Allocation Line).
- Standard methods for forecasting this portfolio use the <u>asset side</u> i.e. tangency of the Efficient Frontier and the Capital Allocation Line
- ⇒ They don't work empirically due to measurement error on N + N(N + 1)/2 parameters (mean plus covariance matrix) e.g. DeMiguel, Garlappi, Uppal (2007)
- E.g. : with N=25 this method requires 350 parameters!
 - Our method uses the <u>SDF side</u> i.e. tangency of the Indifference Curve to the Capital Allocation Line

 \Rightarrow need to estimate only N parameters of the dual solution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cross-Sectional Pricing The Information Portfolio Portable α

Why does it work?

- The maximum Sharpe Ratio portfolio must price the cross-section of assets (since it pins down the Capital Allocation Line).
- Standard methods for forecasting this portfolio use the <u>asset side</u> i.e. tangency of the Efficient Frontier and the Capital Allocation Line
- ⇒ They don't work empirically due to measurement error on N + N(N + 1)/2 parameters (mean plus covariance matrix) e.g. DeMiguel, Garlappi, Uppal (2007)
- E.g. : with N=25 this method requires 350 parameters!
 - Our method uses the <u>SDF side</u> i.e. tangency of the Indifference Curve to the Capital Allocation Line

 \Rightarrow need to estimate only N parameters of the dual solution.

イロト イヨト イヨト イヨト 三日

Cross-Sectional Pricing The Information Portfolio Portable α

Why does it work?

- The maximum Sharpe Ratio portfolio must price the cross-section of assets (since it pins down the Capital Allocation Line).
- Standard methods for forecasting this portfolio use the <u>asset side</u> i.e. tangency of the Efficient Frontier and the Capital Allocation Line
- ⇒ They don't work empirically due to measurement error on N + N(N + 1)/2 parameters (mean plus covariance matrix) e.g. DeMiguel, Garlappi, Uppal (2007)
- E.g. : with N=25 this method requires 350 parameters!
 - Our method uses the <u>SDF side</u> i.e. tangency of the Indifference Curve to the Capital Allocation Line
 - \Rightarrow need to estimate only N parameters of the dual solution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

The Big Picture

- Introduction
- (Other) Closely Related Literature
- 2 Methodology: An Information Theoretic Approach
 - Change of Measure and Relative EntropyWhy Entropy?

3 Empirical Analysis

- Cross-Sectional Pricing
- The Information Portfolio
- Portable α : an "Information Anomaly"

4 Conclusion

Appendix

イロト イヨト イヨト イヨト

Conclusion

The paper provides a novel (ML) method for the extraction of the SDF, and its mimicking portfolio, that:

- Prices assets out-of-sample as well or better than canonical factor models.
- Identifies a large amount of risk not spanned by traditional factors.
- Provides a tradeable portfolio that:
 - is statistically indistinguishable from the maximum Sharpe Ratio portfolio;
 - has very high Sharpe Ratio even when hedged w.r.t. traditional factors;
 - In a slow turnover, hence low trading costs.

イロト 不得 トイヨト イヨト 二日