Belief Dispersion in the Stock Market

Adem Atmaz
Krannert School of Management
Purdue University

Suleyman Basak
London Business School and CEPR

Motivation

- Empirical evidence on belief dispersion is vast and mixed
- Negative relation between belief dispersion and stock return: Diether, Malloy, and Scherbina (2002), Chen, Hong, and Stein (2002), Goetzmann and Massa (2005), Park (2005), Berkman, Dimitrov, Jain, Koch, and Tice (2009), Yu (2011)
- Positive or no significant relation:

Qu, Starks, and Yan (2003), Doukas, Kim, and Pantzalis (2006), Avramov, Chordia, Jostova, and Philipov (2009)

- Existing theoretical works do not provide satisfactory answers

Our Work

- Provide a tractable model of belief dispersion which simultaneously supports empirical regularities in
- stock price
- mean return
- volatility
- trading volume
- Fully closed-form expressions for all quantities
- Key feature: summarize wide range of beliefs with
- average bias in beliefs
- dispersion in beliefs

Our Main Results

- Stock price is convex in cash-flow news
- Stock price increases, its mean return decreases in belief dispersion when the view on the stock is optimistic
- Stock price may increase in risk aversion in bad states
- Belief dispersion generates:
- excess stock volatility
- non-trivial trading volume
- a positive relation between the two
- Belief dispersion reduces learning induced excess volatility
- Finitely-many-investor models do not necessarily generate our main results

Related Theoretical Literature

- Heterogeneous Beliefs
- Abel (1989); Varian (1989); Shalen (1993); Harris and Raviv (1993); Kandel and Pearson (1995); Detemple and Murthy (1994); Zapatero (1998); Basak (2000, 2005); Scheinkman and Xiong (2003); Johnson (2004); Anderson, Ghysels, and Juergens (2005), Kogan, Ross, Wang and Westerfield (2006); Buraschi and Jiltsov (2006); Jouini and Napp (2007); David (2008); Yan (2008); Gallmeyer and Hollifield (2008); Cao and Ou-Yang (2008); Dumas, Kurshev, and Uppal (2009); Banerjee and Kremer (2010); Xiong and Yan (2010); Cvitanić and Malamud (2011); Bhamra and Uppal (2014); Chabakauri (2015)
- Parameter Uncertainty and Learning
- Barsky and De Long (1993); Timmermann (1993, 1996); Veronesi (1999); Brennan and Xia (2001); Lewellen and Shanken (2002); Pastor and Veronesi (2003)

Model

- Pure-exchange economy with finite horizon $[0, T]$ and a single source of risk ω
- Two securities: a risky stock and a riskless bond
- Stock is in positive net supply and pays off D_{T} at horizon T, horizon value of the cash-flow news process D with

$$
d D_{t}=D_{t}\left[\mu d t+\sigma d \omega_{t}\right]
$$

- Stock price S has dynamics

$$
d S_{t}=S_{t}\left[\mu_{S t} d t+\sigma_{S t} d \omega_{t}\right]
$$

- Bond is in zero net supply

Investors' Beliefs

- Continuum of investors commonly observe cash-flow news D but have different beliefs
- Investors indexed by their type $\theta \in \Theta$
- Under θ-type investor's beliefs, cash-flow news follows

$$
d D_{t}=D_{t}\left[(\mu+\theta) d t+\sigma d \omega_{t}(\theta)\right]
$$

Investor Type Space

- Investor type space $\Theta=\mathbb{R}$
- Investor relative frequency is Gaussian
- mean \tilde{m}
- standard deviation \tilde{v}
- All investors endowed with equal stock shares
- Initial wealth of distinct θ-type investor

$$
W_{0}(\theta)=S_{0} \frac{1}{\sqrt{2 \pi \tilde{v}^{2}}} e^{-\frac{1}{2} \frac{(\theta-\tilde{\tilde{m}})^{2}}{\tilde{v}^{2}}}
$$

Investors' Preferences and Optimization

- Each θ-type investor chooses a portfolio process $\phi(\theta)$ to maximize:

$$
\mathbb{E}^{\theta}\left[\frac{W_{T}(\theta)^{1-\gamma}}{1-\gamma}\right]
$$

where θ-type investor's financial wealth $W_{t}(\theta)$ follows

$$
d W_{t}(\theta)=\phi_{t}(\theta) W_{t}(\theta)\left[\mu_{S t}(\theta) d t+\sigma_{S t} d \omega_{t}(\theta)\right]
$$

Average Bias and Dispersion in Beliefs

- Average bias in beliefs is the implied bias of the corresponding representative investor
- weighted average of investors' biases

$$
m_{t}=\int_{\Theta} \theta h_{t}(\theta) d \theta
$$

with positive weights: $\int_{\Theta} h_{t}(\theta) d \theta=1$

- Dispersion in beliefs is the standard deviation of investors' biases

$$
v_{t}^{2} \equiv \int_{\Theta}\left(\theta-m_{t}\right)^{2} h_{t}(\theta) d \theta
$$

Equilibrium Average Bias and Dispersion in Beliefs

- Average bias in beliefs:

$$
m_{t}=m+\left(\ln D_{t}-\left(m+\mu-\frac{1}{2} \sigma^{2}\right) t\right) \frac{v_{t}^{2}}{\gamma \sigma^{2}}
$$

- average bias is stochastic
- dispersion amplifies the effects of cash-flow news
- risk attitude influences average bias
- Dispersion in beliefs:

$$
v_{t}^{2}=\frac{v^{2} \sigma^{2}}{\sigma^{2}+\frac{1}{\gamma} v^{2} t}
$$

- dispersion also represents extra uncertainty
- Unique weights:

$$
h_{t}(\theta)=\frac{1}{\sqrt{2 \pi v_{t}^{2}}} e^{-\frac{1}{2} \frac{\left(\theta-m_{t}\right)^{2}}{v_{t}^{2}}}
$$

Equilibrium Average Bias and Dispersion in Beliefs

- Good news leads to optimism, bad news leads to pessimism
- Dispersion amplifies the average bias

Equilibrium Stock Price

Benchmark no-dispersion economy stock price:

$$
\bar{S}_{t}=D_{t} e^{\left(\mu-\gamma \sigma^{2}\right)(T-t)}
$$

Equilibrium stock price:

$$
S_{t}=\bar{S}_{t} e^{m_{t}(T-t)-\frac{1}{2 \gamma}(2 \gamma-1) v_{t}^{2}(T-t)^{2}}
$$

- Convex in cash-flow news (Basu (1997), Xu (2007), Conrad, Cornell, and Landsman (2002))
- Higher than in benchmark when the view on the stock is optimistic (Brown and Cliff (2005))
- Increasing in belief dispersion when the view on the stock is optimistic (Goetzmann and Massa (2005), Yu (2011))

Equilibrium Stock Price (cont'd)

(a) Relatively bad news

(b) Relatively good news

- May increase in risk aversion in bad states

Equilibrium Mean Return

Benchmark no-dispersion economy mean return:

$$
\bar{\mu}_{S t}=\gamma \sigma^{2}
$$

Equilibrium mean return:

$$
\mu_{S t}=\bar{\mu}_{S t} \frac{v_{t}^{4}}{v_{T}^{4}}-m_{t} \frac{v_{t}^{2}}{v_{T}^{2}}
$$

- Lower than in benchmark when the view on the stock is optimistic (La Porta (1996), Brown and Cliff (2005))
- Decreasing in belief dispersion when the view on the stock is optimistic (Diether, Malloy, and Scherbina (2002), Yu (2011))
- May decrease in risk aversion in bad states

Equilibrium Stock Volatility

Benchmark no-dispersion economy stock volatility:

$$
\bar{\sigma}_{S t}=\sigma
$$

Equilibrium stock volatility:

$$
\sigma_{S t}=\bar{\sigma}_{S t}+\frac{v_{t}^{2}}{\gamma \sigma}(T-t)
$$

- Higher than in benchmark (Leroy and Porter (1981), Shiller (1981))
- Increasing in belief dispersion (Ajinkya and Gift (1985), Anderson, Ghysels, and Juergens (2005), Banarjee (2011))
- Decreasing in risk aversion

Equilibrium Trading Volume

Trading volume measure:

$$
V_{t} \equiv \frac{1}{2} \int_{\Theta}\left|\sigma_{\psi t}(\theta)\right| d \theta
$$

- Increasing in belief dispersion (Ajinkya et.al. (1991), Bessembinder et.al. (1996), Goetzmann and Massa (2005))
- Positively related to stock volatility (Gallant, Rossi, Tauchen (1992))

Comparisons with Two-Investor Economy

- Stock price no longer convex
- Mean return does not strictly decrease

Comparisons with Two-Investor Economy (cont'd)

- Stock volatility may decrease in belief dispersion
- Trading volume may decrease in belief dispersion

Bayesian Learning

- θ-type investor's prior: $\mathcal{N}\left(\mu+\theta, s^{2}\right)$
- θ-type investor's posterior: $\mathcal{N}\left(\mu+\widehat{\theta}_{t}, s_{t}^{2}\right)$
- θ-type investor's time- t bias:

$$
\widehat{\theta}_{t}=\frac{s_{t}^{2}}{s^{2}} \theta+\frac{s_{t}^{2}}{\sigma} \omega_{t}
$$

- parameter uncertainty:

$$
s_{t}^{2}=\frac{s^{2} \sigma^{2}}{\sigma^{2}+s^{2} t}
$$

- Under θ-type investor's beliefs, cash-flow news follows

$$
d D_{t}=D_{t}\left[\left(\mu+\widehat{\theta}_{t}\right) d t+\sigma d \omega_{t}(\theta)\right]
$$

Equilibrium with Bayesian Learning

$$
\begin{aligned}
S_{t} & =\bar{S}_{t} e^{m_{t}(T-t)-\frac{1}{2}(2 \gamma-1)\left(\frac{1}{\gamma} v^{2}+s^{2}\right) \frac{v_{t}^{2}}{v^{2}} \frac{s^{2}}{s_{t}^{2}}(T-t)^{2}} \\
\mu_{S t} & =\bar{\mu}_{S t} \frac{v_{t}^{4}}{v_{T}^{4}} \frac{s_{T}^{4}}{s_{t}^{4}}-m_{t} \frac{v_{t}^{2}}{v_{T}^{2}} \frac{s_{T}^{2}}{s_{t}^{2}} \\
\sigma_{S t} & =\bar{\sigma}_{S t}+\frac{1}{\sigma}\left(\frac{1}{\gamma} v^{2}+s^{2}\right) \frac{v_{t}^{2}}{v^{2}} \frac{s^{2}}{s_{t}^{2}}(T-t)
\end{aligned}
$$

- Stock price is increasing, its mean return is decreasing in parameter uncertainty when the view on the stock is optimistic (Massa and Simonov (2005), Ozoguz (2009))
- Stock volatility is increasing in parameter uncertainty
- Learning induced excess volatility is decreasing in belief dispersion
- Trading volume is decreasing in parameter uncertainty when $\gamma \geq 1$

Conclusion

- Provide a tractable model of belief dispersion which simultaneously supports empirical regularities in stock price, mean return, volatility, trading volume

Key Results:

- Stock price is convex in cash-flow news
- Stock price increases, its mean return decreases in belief dispersion when the view on the stock is optimistic
- Belief dispersion generates:
- excess stock volatility
- non-trivial trading volume
- a positive relation between the two
- Finitely-many-investor models do not necessarily generate our main results
- Above remain valid in a multi-stock economy

