Belief Dispersion in the Stock Market

Adem Atmaz Krannert School of Management Purdue University Suleyman Basak London Business School and CEPR

A B M A B M

- Empirical evidence on belief dispersion is vast and mixed
 - Negative relation between belief dispersion and stock return: Diether, Malloy, and Scherbina (2002), Chen, Hong, and Stein (2002), Goetzmann and Massa (2005), Park (2005), Berkman, Dimitrov, Jain, Koch, and Tice (2009), Yu (2011)
 - Positive or no significant relation: Qu, Starks, and Yan (2003), Doukas, Kim, and Pantzalis (2006), Avramov, Chordia, Jostova, and Philipov (2009)
- Existing theoretical works do not provide satisfactory answers

- Provide a tractable model of belief dispersion which simultaneously supports empirical regularities in
 - stock price
 - mean return
 - volatility
 - trading volume
- Fully closed-form expressions for all quantities
- Key feature: summarize wide range of beliefs with
 - average bias in beliefs
 - dispersion in beliefs

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Stock price is convex in cash-flow news
- Stock price increases, its mean return decreases in belief dispersion when the view on the stock is optimistic
- Stock price may increase in risk aversion in bad states
- Belief dispersion generates:
 - excess stock volatility
 - non-trivial trading volume
 - a positive relation between the two
- Belief dispersion reduces learning induced excess volatility
- Finitely-many-investor models do not necessarily generate our main results

< 同 ト < 三 ト < 三 ト

Related Theoretical Literature

- Heterogeneous Beliefs
 - Abel (1989); Varian (1989); Shalen (1993); Harris and Raviv (1993); Kandel and Pearson (1995); Detemple and Murthy (1994); Zapatero (1998); Basak (2000, 2005); Scheinkman and Xiong (2003); Johnson (2004); Anderson, Ghysels, and Juergens (2005), Kogan, Ross, Wang and Westerfield (2006); Buraschi and Jiltsov (2006); Jouini and Napp (2007); David (2008); Yan (2008); Gallmeyer and Hollifield (2008); Cao and Ou-Yang (2008); Dumas, Kurshev, and Uppal (2009); Banerjee and Kremer (2010); Xiong and Yan (2010); Cvitanić and Malamud (2011); Bhamra and Uppal (2014); Chabakauri (2015)
- Parameter Uncertainty and Learning
 - Barsky and De Long (1993); Timmermann (1993, 1996); Veronesi (1999); Brennan and Xia (2001); Lewellen and Shanken (2002); Pastor and Veronesi (2003)

Model

- Pure-exchange economy with finite horizon [0, T] and a single source of risk ω
- Two securities: a risky stock and a riskless bond
- Stock is in positive net supply and pays off D_T at horizon T, horizon value of the cash-flow news process D with

$$dD_t = D_t \left[\mu dt + \sigma d\omega_t \right]$$

• Stock price S has dynamics

$$dS_t = S_t \left[\mu_{St} dt + \sigma_{St} d\omega_t \right]$$

• Bond is in zero net supply

- Continuum of investors commonly observe cash-flow news *D* but have different beliefs
- Investors indexed by their type $\theta \in \Theta$
- Under θ -type investor's beliefs, cash-flow news follows

$$dD_{t} = D_{t} \left[\left(\mu + \theta \right) dt + \sigma d\omega_{t} \left(\theta \right) \right]$$

Investor Type Space

- Investor type space $\Theta = \mathbb{R}$
- Investor relative frequency is Gaussian
 - ▶ mean *m̃*
 - standard deviation v
- All investors endowed with equal stock shares
- Initial wealth of distinct θ -type investor

$$W_{0}\left(heta
ight)=S_{0}rac{1}{\sqrt{2\pi ilde{ extsf{v}}^{2}}}e^{-rac{1}{2}rac{\left(heta- ilde{ extsf{n}}
ight)^{2}}{ ilde{ extsf{v}}^{2}}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Investors' Preferences and Optimization

 Each θ-type investor chooses a portfolio process φ(θ) to maximize:

$$\mathbb{E}^{\theta}\left[\frac{\mathcal{W}_{\mathcal{T}}\left(\theta\right)^{1-\gamma}}{1-\gamma}\right]$$

where θ -type investor's financial wealth $W_t(\theta)$ follows

$$dW_{t}\left(\theta\right) = \phi_{t}\left(\theta\right)W_{t}\left(\theta\right)\left[\mu_{St}\left(\theta\right)dt + \sigma_{St}d\omega_{t}\left(\theta\right)\right]$$

イロト イヨト イヨト -

Average Bias and Dispersion in Beliefs

- Average bias in beliefs is the implied bias of the corresponding representative investor
 - weighted average of investors' biases

$$m_{t}=\int_{\Theta}\theta h_{t}\left(\theta\right)d\theta$$

with positive weights: $\int_{\Theta} h_t(\theta) \, d\theta = 1$

• Dispersion in beliefs is the standard deviation of investors' biases

$$v_{t}^{2}\equiv\int_{\Theta}\left(heta-m_{t}
ight)^{2}h_{t}\left(heta
ight)d heta$$

イロト イヨト イヨト ・

Equilibrium Average Bias and Dispersion in Beliefs

• Average bias in beliefs:

$$m_t = m + \left(\ln D_t - \left(m + \mu - \frac{1}{2} \sigma^2 \right) t \right) \frac{v_t^2}{\gamma \sigma^2}$$

- average bias is stochastic
- dispersion amplifies the effects of cash-flow news
- risk attitude influences average bias
- Dispersion in beliefs:

$$\mathbf{v}_t^2 = \frac{\mathbf{v}^2 \sigma^2}{\sigma^2 + \frac{1}{\gamma} \mathbf{v}^2 t}$$

- dispersion also represents extra uncertainty
- Unique weights:

$$h_t\left(\theta\right) = \frac{1}{\sqrt{2\pi v_t^2}} e^{-\frac{1}{2} \frac{\left(\theta - m_t\right)^2}{v_t^2}}$$

Equilibrium Average Bias and Dispersion in Beliefs

- Good news leads to optimism, bad news leads to pessimism
- Dispersion amplifies the average bias

Equilibrium Stock Price

- Convex in cash-flow news (Basu (1997), Xu (2007), Conrad, Cornell, and Landsman (2002))
- Higher than in benchmark when the view on the stock is optimistic (Brown and Cliff (2005))
- Increasing in belief dispersion when the view on the stock is optimistic (Goetzmann and Massa (2005), Yu (2011))

Equilibrium Stock Price (cont'd)

May increase in risk aversion in bad states

Benchmark no-dispersion economy mean return:

$$\overline{\mu}_{St} = \gamma \sigma^2$$

Equilibrium mean return:

$$\mu_{St} = \overline{\mu}_{St} \frac{v_t^4}{v_T^4} - m_t \frac{v_t^2}{v_T^2}$$

- Lower than in benchmark when the view on the stock is optimistic (La Porta (1996), Brown and Cliff (2005))
- Decreasing in belief dispersion when the view on the stock is optimistic (Diether, Malloy, and Scherbina (2002), Yu (2011))
- May decrease in risk aversion in bad states

Equilibrium Stock Volatility

Benchmark no-dispersion economy stock volatility:

$$\overline{\sigma}_{St} = \sigma$$

Equilibrium stock volatility:

$$\sigma_{St} = \overline{\sigma}_{St} + \frac{v_t^2}{\gamma\sigma} \left(T - t\right)$$

- Higher than in benchmark (Leroy and Porter (1981), Shiller (1981))
- Increasing in belief dispersion (Ajinkya and Gift (1985), Anderson, Ghysels, and Juergens (2005), Banarjee (2011))
- Decreasing in risk aversion

Equilibrium Trading Volume

- Increasing in belief dispersion (Ajinkya et.al. (1991), Bessembinder et.al. (1996), Goetzmann and Massa (2005))
- Positively related to stock volatility (Gallant, Rossi, Tauchen (1992))

Comparisons with Two-Investor Economy

• Stock price no longer convex

• Mean return does not strictly decrease

Comparisons with Two-Investor Economy (cont'd)

- Stock volatility may decrease in belief dispersion
- Trading volume may decrease in belief dispersion

< 177 ▶

- ∢ ⊒ →

Bayesian Learning

- heta-type investor's prior: $\mathcal{N}\left(\mu+ heta,s^2
 ight)$
- heta-type investor's posterior: $\mathcal{N}(\mu + \widehat{ heta}_t, s_t^2)$
 - θ-type investor's time-t bias:

$$\widehat{\theta}_t = \frac{s_t^2}{s^2}\theta + \frac{s_t^2}{\sigma}\omega_t$$

parameter uncertainty:

$$s_t^2 = \frac{s^2 \sigma^2}{\sigma^2 + s^2 t}$$

• Under θ -type investor's beliefs, cash-flow news follows

$$dD_t = D_t[(\mu + \widehat{ heta}_t)dt + \sigma d\omega_t \left(heta
ight)]$$

イロト イヨト イヨト ・

Equilibrium with Bayesian Learning

$$S_{t} = \overline{S}_{t} e^{m_{t}(T-t) - \frac{1}{2}(2\gamma-1)\left(\frac{1}{\gamma}v^{2} + s^{2}\right)\frac{v_{t}^{2}}{v^{2}}\frac{s^{2}}{s_{t}^{2}}(T-t)^{2}}$$

$$\mu_{St} = \overline{\mu}_{St} \frac{v_{t}^{4}}{v_{T}^{4}}\frac{s_{T}^{4}}{s_{t}^{4}} - m_{t}\frac{v_{t}^{2}}{v_{T}^{2}}\frac{s_{T}^{2}}{s_{t}^{2}}$$

$$\sigma_{St} = \overline{\sigma}_{St} + \frac{1}{\sigma}\left(\frac{1}{\gamma}v^{2} + s^{2}\right)\frac{v_{t}^{2}}{v^{2}}\frac{s^{2}}{s_{t}^{2}}(T-t)$$

- Stock price is increasing, its mean return is decreasing in parameter uncertainty when the view on the stock is optimistic (Massa and Simonov (2005), Ozoguz (2009))
- Stock volatility is increasing in parameter uncertainty
- Learning induced excess volatility is decreasing in belief dispersion
- Trading volume is decreasing in parameter uncertainty when $\gamma \geq 1$

Conclusion

• Provide a tractable model of belief dispersion which simultaneously supports empirical regularities in stock price, mean return, volatility, trading volume

Key Results:

- Stock price is convex in cash-flow news
- Stock price increases, its mean return decreases in belief dispersion when the view on the stock is optimistic
- Belief dispersion generates:
 - excess stock volatility
 - non-trivial trading volume
 - a positive relation between the two
- Finitely-many-investor models do not necessarily generate our main results
- Above remain valid in a multi-stock economy