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MOTIVATION

RISK TAKING IN RANK-BASED COMPETITION: IT’S

IMPORTANT

Hedge funds tournaments: (Wagner and Winter, 2013), (Chen, Hughson
and Stoughton, 2015)
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MOTIVATION

AT A . . .

technical level, risk-taking in the contests’ problem is closely related to
I All-pay auction strategies (Barut and Kovenock, 1998).
I Optimal Bayesian persuasion (Meyer, 1991), (Kamenica and Gentzkow,

2011)
policy level, in a world where agents are motivated by rank-based
incentives, contest risk taking has significant social externalities:

I stability of the financial system
I speed of technical innovation
I corporate investment and financial policies
I the cost of military and diplomatic conflicts

The social externalities generated by contestant risk taking are context
specific

But contestant risk-taking itself simply depends on rank-based rewards

So a general theory of rank-based risk taking can be applied in specific
contexts to mitigate externalities
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MOTIVATION

THIS PAPER

Develops a theory of risk taking in rank-based competitions with
I An arbitrary (finite) number of contestants,
I An arbitrary number of distinct contest rewards,
I in which agent strategy sets are restricted only by a capacity constraint.

Objective: Characterize the relation between the equilibrium
performance distributions chosen by the contestants and the structure of
rewards offered by the contest.
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MOTIVATION

GENERALITY IS IMPORTANT

Contests with multiple contestants, varying reward levels, and
endogenous choice of risk distributions induce fundamentally different
equilibrium behavior than “simpler” contests

Most rules for allocating rank-based rewards proposed in economics
literature (e.g., Ziph’s law, PAM models) entail non-binary reward
structures.

Differences between the solution of random contest games and other
games (e.g., all pay auctions) are obscured if attention is restricted to
two-player models.

Why?
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MOTIVATION

ENDOGENOUS PERFORMANCE DISTRIBUTIONS MATTER

For a very large class of rank-based prize allocation systems, which
includes the power law, Gilbrat’s law, winner-take all, convex, and
concave allocations,

equilibrium performance distributions never satisfy the symmetry and
unimodality restrictions imposed by parametric models of risk taking.
(e.g., (Klette and Meza, 1986), (Hvide, 2002), (Gaba, Tsetlin and
Winkler, 2004), (Goel and Thakor, 2008), and (Kräkel, 2008))
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FANG/NOE SKEWING THE ODDS MOSCOW(2015) 6 / 48



MOTIVATION

MULTIPLE PRIZE LEVELS (> 2) MATTER

Qualitatively different performance distribution “shapes” emerge when
the number of distinct reward levels increases above two:

I Interior mode performance distributions
I Multi-modal performance distributions

The mechanical link between the dispersion and skewness breaks
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MOTIVATION

EXECUTIVE SUMMARY OF RESULTS

Optimal contest strategies are always bounded.

The upper bound is increasing in the ratio between the reward for the
highest performance level and the fair share division of rewards.

The modality of the performance distribution depends on the sign pattern
of the second differences of the rank-ordered rewards.

Increasing real inequality between rewards increases risk taking.

Increasing the convexity of the relation between reward and rank
increases the skewness of contestant performance.
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FIXED CONTEST PAYOFF FUNCTION

Risk taking with fixed contest
payoff functions
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FIXED CONTEST PAYOFF FUNCTION

THE CONTEST

An allocation of rewards based on performance level, x. Rewards
determined by
Contest payoff function, P, which is

I non-negative,
I nondecreasing, and
I continuous

function defined over the compact interval [0, x̄], x̄ > 0.

minx∈[0,x̄] P(x) := v≥ 0

maxx∈[0,x̄] P(x) := v̄ > v
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FIXED CONTEST PAYOFF FUNCTION

THE CONTESTANT’S CHALLENGE

Pick a non negative random performance variable, X̃, with associated
performance distribution, F, to maximize E[P(X̃)]
subject only to the capacity constraint:

E[X̃] =
∫ x̄

0
xdF(x)≤ µ.
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FIXED CONTEST PAYOFF FUNCTION

SOLUTION TO CONTESTANT’S PROBLEM

LEMMA 1. OPTIMALITY CONDITIONS FOR F
A probability distribution function solving the contestants problem exists. For
any such solution, there exist multipliers α ≥ 0 and β > 0 such that the
solution, F, satisfies the condition

P(x)≤ α +β x ∀ x≥ 0;

dF{x≥ 0 : P(x)< α +β x}= 0.

FANG/NOE SKEWING THE ODDS MOSCOW(2015) 12 / 48



FIXED CONTEST PAYOFF FUNCTION

VALUE MINIMIZING CONTEST DESIGNS

Now think of the contest designer’s problem
Contest designer aims minimize the contestant’s payoffs over all contest
payoff functions

I with performance range [0, x̄] and
I minimum and maximum prizes, v and v̄.
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FIXED CONTEST PAYOFF FUNCTION

OBSERVATIONS

The contestant’s optimal strategy will exploit any convexity in the payoff
schedule through randomization

⇒ contestant payoff actually obtained equals the payoff against the
concave majorant of the payoff function, P̂.
Concave majorant: the least concave function that majorizes P. The
majorant is also the

I pointwise infimum of all upper support lines of P
I At any performance level x, P̂(x) equals the maximum payoff the

contestant can attain over using any random performance strategy with
mean x.

I An optimal design (designer’s perspective) always produces a uniform
concave upper envelope.
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THE CONTEST GAME

Risk taking in contest games
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RANDOM PERFORMANCE CONTESTS

In random performance contests, the contest payoff function is not fixed
by a designer.

Rather, it is the product of the strategies played by the contestants.

The contest payoff function of each contestant is fixed by the random
performance strategies used by the other contestants.
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THE CONTEST GAME

THE CONTEST GAME

n≥ 2 homogeneous contestants who simultaneously choose performance
distributions

All the contestants pick a distribution, F, subject to only to the constraint
that the distribution has non-negative support and its expectation is less
than µ

There are n prizes, vi is the value of the ith prize, v1 ≤ ·· · ≤ vn.

Each contestant’s realized performance is a draw from the performance
distribution she choses.

Prize allocation is rank-based: highest realized performance wins the nth
prize,. . .

Ties are broken by a proration rule.
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THE CONTEST GAME

EQUILIBRIUM

There are no asymmetric equilibria.

In equilibrium, all contestants submit continuous performance
distributions.

There is a unique symmetric equilibrium for given contest parameters.

Equilibrium condition: Each contestant submits a performance
distribution, F, that results in all contestants facing a uniform contest
payoff function.

Why?
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THE CONTEST GAME

BASIC PROPERTIES

LEMMA 8
Equilibrium random performance is the same for all contestants and is
a. invariant under increasing affine transformations of the prize schedule,
b. proportional to capacity, µ ,
c. and distributed continuously over its support [0,µ n((vn− v1)/V)], where

V represents total prize payments in excess of the lowest prize, v1.

Details?

OBSERVATION

The upper bound on random performance can be written as

(vn− v1)/V
1/n

.

fraction of normalized real gains received by highest performer : fair-share fraction
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THE CONTEST GAME

THE BASIC CHARACTERIZATION FORMULA

QUANTILE REPRESENTATION

Qv(p) =
µ n
V

n−1

∑
i=1

∆vi Ip(i,n− i)

Qv Quantile function of equilibrium performance.

V Total prize value in excess of the smallest prize, i.e.,
V = ∑

n
i=1(vi− v1).

∆vi Prize differences, i.e.,
∆vi = vi+1− vi.

Ip(i,n− i) Component Beta distributions with parameters a = i and
b = n− i.
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SHAPE

The shape of performance
distributions
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SHAPE

CARROTS, STICKS, AND RISKS

Consider a contest prize schedule with three distinct prize levels and four
contestants.

I A “stick” worth 0.0.
I A “hay bundle” worth 0.5
I A “carrot” worth 1.0

Low performers receive the sticks, middling performers the hay, and top
performers the carrots.

The number of carrots and stick combined with the number of
contestants determines the prize vector.
Consider three possible carrot-and-stick prize schedules:

I No sticks/One carrot
I One stick/One carrot
I Two sticks/One carrot

How will increasing the number of sticks affect risk-taking?
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SHAPE

STICKS

No sticks/One carrot
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STICKS
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SHAPE

STICKS

Two sticks/One carrot
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SHAPE

STICKS

So how does increasing the number of sticks affect
risk-taking?
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SHAPE

TAIL-BEHAVIOR OF PERFORMANCE DISTRIBUTIONS

[PROPOSITION 3]

Determined by the second differences of the prize schedule: roughly,
I if the second difference for the lowest prize level with a non vanishing

second difference is positive (negative) then PDF is initially decreasing
(increasing);

I if the second difference for the highest prize level with a non vanishing
second difference is positive (negative) then PDF is ultimately decreasing
(increasing).

Example: Tail behavior of balanced carrot/stick contests.

Contests

two-carrots/two-sticks one-carrot/one stick

v (0,0,1,1) (0, 1
2 ,

1
2 ,1)

∆v (0,1,0) (1
2 ,0,

1
2)

∆2v (1,−1) (−1
2 ,

1
2)
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(increasing);

I if the second difference for the highest prize level with a non vanishing
second difference is positive (negative) then PDF is ultimately decreasing
(increasing).

Example: Tail behavior of balanced carrot/stick contests.

Contests
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SHAPE

CARROTS, STICKS, AND MODALITY OF CONTESTANT

PERFORMANCE DISTRIBUTIONS

0.0 0.5 1.0 1.5 2.0
x0.0

0.5
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f2:2

f1:1
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SHAPE

GLOBAL MODALITY

PROPOSITION 4. QUASICONVEXITY/QUASICONCAVITY OF PDF
If the sequence of second differences of the prize schedule has at most one
sign change, then equilibrium performance PDF that is either quasiconvex or
quasiconcave, and thus the global behavior of the PDF is determined by its
tail behavior.

Implication: All convex contests induce right-skewed performance
distributions with decreasing PDFs, e.g.,

I Winner take all, power law, Ziph’s law, Gilbrat’s law contests
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DISPERSION

Performance dispersion and the
prize schedule
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DISPERSION

DISPERSION AND INEQUALITY

DISPERSION

Let F and G be two distributions. F is more dispersed than G in the sense of
convex order if, for all convex functions, w : ℜ+→ℜ∫

w(x)dF(x)≥
∫

w(x)dG(x).

INEQUALITY

Let x and y be ordered nonnegative vectors x = (x1, . . . ,xn), y = (y1, . . . ,yn),
x1 ≤ . . .≤ xn, y1 ≤ . . .≤ yn, where n is a natural number. Then x majorizes y if

k

∑
i=1

xi ≤
k

∑
i=1

yi, ∀k ∈ {1, . . . ,n−1}, and
n

∑
i=1

xi =
n

∑
i=1

yi.
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DISPERSION

REAL PRIZE INEQUALITY AND DISPERSION

For a prize vector v = (v1, . . . ,vn), define its normalized real gain vector
as

v̄r = (v̄r
1, . . . , v̄

r
n) =

(
v1− v1

∑
n
i=1(vi− v1)

, . . . ,
vn− v1

∑
n
i=1(vi− v1)

)
.

Increasing the inequality of the normalized real gains offered by the
prize schedule, always increases the dispersion of equilibrium
performance distribution.

PROPOSITION 5. PRIZE IN EQUALITY⇒ PERFORMANCE
DISPERSION

Let v and u be two prize schedules

v̄r majorizes ūr⇒ Fv is more dispersed than Fu.
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DISPERSION

OBSERVATION: “REAL” IS REAL IMPORTANT

Reducing the inequality of the (nominal) prize schedule can increase the
dispersion of the performance distribution:

Example: Ultra-robin hood transfer from the highest prize to the lowest
prize:

Prize schedules

before uRH transfer after uRH transfer

v (1,2,3,4) (13/4,2,3,31/4)

v̄r
(
0, 1

6 ,
1
3 ,

1
2

) (
0, 1

12 ,
5

12 ,
1
2

)

v majorizes vuRH but v̄r
uRH majorizes v̄r
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DISPERSION

REAL NOT NOMINAL INEQUALITY MATTERS

The ultra-RobinHood transfer reduces nominal prize inequality,
measured by Lorentz curve of the prize vector
The ultra-RobinHood transfer increases real prize inequality, measured
by the Lorentz curve for normalized real gains.
Increase in real prize inequality leads to more performance dispersion,
i.e., more risk taking.

0 1
0

1

{
uRH

{
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CONTEST SIZE

Effect of contest size on risk
taking

FANG/NOE SKEWING THE ODDS MOSCOW(2015) 32 / 48



CONTEST SIZE

EFFECT OF NEW ENTRANTS

Adding a matching number of new entrants and minimum prizes to a
contest increases real prize inequality.
The increase in prize inequality leads to more performance dispersion,
i.e., more risk taking.

Parameters?
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{
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CONTEST SIZE

EFFECT OF s-FOLD SCALING OF THE PRIZE SCHEDULE

Up scaling contest size does not affect real prize inequality.

Parameters?
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CONTEST SIZE

EFFECT OF s-FOLD SCALING OF THE PRIZE SCHEDULE

Up scaling contest size does not affect real prize inequality.
Thus, no effect on Lorentz curve

Parameters?
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CONTEST SIZE

SCALING IN THE LIMIT

As the scaling factor increases without limit, the performance
distribution converges to a discrete distribution whose support is
determined by the number of non-vanishing prize differences of the
original prize schedule.
Even when the scaling factor is modest, the clustering of performance
around the limit points is quite apparent.
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Parameters?
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SKEWNESS

The skewness of performance
distributions
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SKEWNESS

SKEWNESS: DEFINITIONS

VANZWET SKEWNESS ORDER

Let F and G be two CDFs, both of which are strictly increasing and twice
continuously differentiable on the corresponding support. The distribution G
is more skewed to the right (left) than F in the sense of (Zwet, 1964) if and
only if G−1 ◦F is convex (concave) on the support of F.

PRIZE VALUE TRANSFORMATION FUNCTION

A function h : ℜ→ℜ is a prize value transformation function if it is
nondecreasing. The prize value transformation of prize vector v generated by
h, which we represent by vh, is defined by vh

i = h(vi) for all i ∈ {1, . . . ,n}.
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SKEWNESS

SKEWNESS: RESULT

CONVEX TRANSFORMATION INCREASE SKEWNESS

If h is a prize value transformation function, then the following two
statements are equivalent:

h is convex

for all prize schedules, the equilibrium performance distribution under vh

is more skewed to the right in than the equilibrium performance
distribution under v.
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SKEWNESS

EFFECT OF CONVEX TRANSFORMATIONS: EXAMPLE

Consider the power law (coefficient .50) prize schedule for a contest with
eight prizes:

vp(i) = (n+1− i)−1/2, i = 1,2 . . .8.

Apply the transformation h(x) = x2 to vp to produce vh
p.
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Consider the power law (coefficient .50) prize schedule for a contest with
eight prizes:

vp(i) = (n+1− i)−1/2, i = 1,2 . . .8.

Apply the transformation h(x) = x2 to vp to produce vh
p.

h is convex, so the difference ratio i→ ∆vh
p(i)/∆vp(i) is increasing
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EFFECT OF CONVEX TRANSFORMATIONS: EXAMPLE

Consider the power law (coefficient .50) prize schedule for a contest with
eight prizes:

vp(i) = (n+1− i)−1/2, i = 1,2 . . .8.

Apply the transformation h(x) = x2 to vp to produce vh
p.

The convex transformation increases right skewness of the performance
distribution
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IMPLICATIONS

PREDICTIONS

Given Chevalier and Ellison (1997) and Chevalier and Ellison (1999)
I Young fund managers should exhibit skewness aversion
I Senior managers should exhibit skewness preference

Firms offering Executive compensation packages that feature a high
CEO Pay Slice (Bebchuk, Cremers and Peyer, 2011) will exhibit higher
unsystematic revenue volatility.

Industries with significant network externalities (thus winner-take-all
dynamics) should have more skewed and volatile revenues.
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IMPLICATIONS

POLICY

Limitations on the upper range of CEO compensation should be industry
specific:

I Reducing CEO pay slice in industries where risk taking is socially harmful
(e.g., banking)

I Not restricting CEO pay slice in industries where equilibrium risk-taking
is below socially optimal levels (e. g., biotechnology )

When taking upside risk is optimal (e.g. investors have a skewness
preference) but downside risk-taking has systemic consequences

I Concavifying downside rewards
I Convexifying upside rewards

can is the optimal policy (E.g. for alternative asset management)
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IMPLICATIONS

Thank you for your time!
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APPENDIX

MULTIPLE CONTESTANTS > 2 ALSO MATTER

In an all-pay auction, but not a rank-based contest game, a bidder has a
walk-away option: the bidder can walk away from the auction and keep
his wealth intact.

When there only two bidders, it is never optimal for a bidder to exercise
the walk-away option

In the two bidder case, an isomorphism can be established between all
pay auction equilibria and random performance contest equilibria.
when the number of participants (bidders in the all-pay auction
contestants in the random performance contest) exceeds two, the walk
away option can rationally exercised in equilibrium. The isomorphism
breaks

I Unique equilibrium in symmetric random contest game.
I Multiple equilibria in all-pay auction game.
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APPENDIX

UNIFORM EQUILIBRIUM CONTEST PAYOFF FUNCTION

The uniform bound puts a floor on x̄
The equilibrium condition that x̄ is a best response puts a ceiling on x̄
The floor and the ceiling are the same.
The ceiling can only be reached if the concave majorant of the contest
payout function is uniform.
So, the concave majorant of the contest payoff function is uniform with
upper bound, x̄.
If the contest payoff function breaks contact with its concave majorant at
any performance level, that performance level is not a best response and
so will not be played.

I Which ensures that if the contest payoff function “goes flat” it never
returns to contact

I So in order to reach x̄, contact must never be broken.
So contest payoff function equals its concave majorant, and thus is also
uniform.
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APPENDIX

EQUILIBRIUM CONDITIONS ON DISTRIBUTIONS

EQUILIBRIUM DISTRIBUTION EQUATION

There exists a unique equilibrium. In this equilibrium, every contestant
chooses the same performance distribution. If Fv represents the equilibrium
performance distribution associated with prize schedule v, then
Supp{Fv}= [0, µ n(vn− v1)/V], where

V =
n

∑
i=1

(vi− v1), (1)

and, over Supp{Fv}, Fv is uniquely determined by

n−1

∑
i=0

(vi+1− v1)

(
n−1

i

)
Fv(x)i (1−Fv(x))n−1−i =

V
µ n

x.

Return

FANG/NOE SKEWING THE ODDS MOSCOW(2015) 45 / 48



APPENDIX

QUANTILE REPRESENTATIONS

QUANTILE FUNCTION

Qv(p) =
µ n
V

n−1

∑
i=0

(vi+1− v1)

(
n−1

i

)
pi (1−p)n−1−i.

Qv(p) =
µ n
V

n−1

∑
i=1

∆vi Ip(i,n− i)
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APPENDIX

QUANTILE REPRESENTATIONS (CONT.)

QUANTILE DENSITY

qv(p) =
µ n(n−1)

V

(
n−2

∑
i=0

∆vi+1

(
n−2

i

)
pi (1−p)n−2−i

)
.

DERIVATIVE OF QUANTILE DENSITY

q′v(p) =
µ n(n−1)

V

(
n−3

∑
i=0

(∆vi+2−∆vi+1)

(
n−2

i

)
(n−2− i)pi(1−p)n−3−i

)
.
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APPENDIX

PARAMETERS

Entrants :
v = (0,0,

4︷ ︸︸ ︷
1, . . . ,1,

4︷ ︸︸ ︷
3, . . . ,3)

ve = (0,0,0,

4︷ ︸︸ ︷
1, . . . ,1,

4︷ ︸︸ ︷
3, . . . ,3)

Scaling : v×2 = (

4︷ ︸︸ ︷
1, . . . ,1,

8︷ ︸︸ ︷
1, . . . ,1,

8︷ ︸︸ ︷
3, . . . ,3)

Clustering :
v×2 = (0,0,

4︷ ︸︸ ︷
1, . . .1,

4︷ ︸︸ ︷
3, . . .3,5,5)

v×8 = (

8︷ ︸︸ ︷
0, . . .0,

16︷ ︸︸ ︷
1, . . .1,

16︷ ︸︸ ︷
3, . . .3,

8︷ ︸︸ ︷
5, . . .5)

Return to Entrants Return to Scaling Return to Clustering
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