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Abstract

We study managerial incentive provision under moral hazard in an environment where
growth opportunities arrive stochastically over time and taking them requires a change of
management. The firm faces a tradeoff between the benefit of always having a manager
able to seize new opportunities and the cost of incentive provision. The optimal dynamic
contract may grant partial job protection whereby the firm insulates its managers from the
risk of growth-induced dismissal and foregoes attractive opportunities when they come after
periods of good performance. Moreover, the prospect of growth-induced turnover limits the
firm’s ability to rely on deferred pay—resulting in more front-loaded compensation. The
empirical evidence for the U.S. is broadly supportive of the model’s predictions. Industries
with better growth prospects experience higher CEO turnover and use more front-loaded
compensation.
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Introduction

When ownership and control are separated, firm performance depends crucially on having
the right managers at the helm and incentivising them properly. Over time, changes in
business conditions may call for a change of top management to seize new opportunities
or overcome challenges faced by the firm. This, however, may complicate the task of
incentivising incumbent managers. For instance, if managers anticipate that their tenure at
the firm will be short, they will be reluctant to accept any form of deferred compensation,
a standard feature of incentive contracts. Thus the firm may face a dilemma: by changing
management to adapt to evolving business conditions, it may increase the costs of incentive
provision.

To analyze this tension, this paper introduces the idea of growth-induced turnover into
a dynamic moral hazard framework. Growth-induced turnover refers to the replacement
of top management that is motivated by the need to have managers who possess the ap-
propriate skill set and experience to lead the firm in its current circumstances. This may
involve for instance adopting new production techniques, making acquisitions, or expand-
ing into new markets. If the incumbent lacks the vision or skills necessary to implement
such transformations, the appointment of new management is the only way for the firm
to successfully pursue its course.1 At the same time, proper dynamic incentive provision
requires a combination of deferred compensation and a threat of dismissal following poor
performance, both of which constitute agency costs. By introducing the possibility of man-
agerial turnover for the sake of growth as well as for discipline, we show how these costs
are affected. The main insight of the paper is that the prospect of growth-induced dis-
missal effectively increases managers’ impatience, thus increasing agency costs and creating
a general tendency to front-load compensation. In fact, the firm may actually be better
off ex ante by committing to pass up otherwise attractive growth opportunities in some
circumstances. More generally, our analysis delivers empirical predictions on the effects of
a firm’s growth prospects on managerial turnover and compensation which we show are
broadly supported in the data.

In our model, a long-lived firm is run by a sequence of risk-neutral managers protected by
limited liability. A moral hazard problem arises because while they are in charge, managers
can divert cashflows for their own private benefit. The firm can fire the incumbent manager
at any time and replace him at a cost. Fleeting growth opportunities arrive stochastically
over time, and a change of management is needed to seize them. If the firm decides to take
up an opportunity, it pays the costs associated with replacing the manager, and its size (or
profitability) increases. A long-term incentive contract is signed between the firm and its
successive managers at the time they are hired.

As in previous dynamic contracting studies, we show that optimal compensation and

1In some circumstances, a change of management may be required to avoid decay, rather than to actually
grow—e.g., when by sticking with the status quo, the firm would fail to face up to a disruptive competitive threat.
For instance, in his narrative of the battle waged in Canada around 1820 between the long-established Hudson
Bay Company (HB) and its upstart rival North West Company (NW), Roberts (2004) recounts: “HB did respond
to the threat, essentially by copying NW’s new approach. It did so, however, only after the leaders of the firm
had been replaced by new ones who understood the nature of the threat and were not tied to the old ways that had
worked so well for so long.” (our emphasis)
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turnover policies in this environment can be described in terms of a state variable that
coincides with the agent’s expected discounted compensation, referred to as his contractual
‘promise’. The manager receives cash compensation only when his promise rises to reach
an endogenous ‘bonus threshold’. When the manager’s promise lies below this threshold,
cash compensation is deferred, and the promise is increased at a contractually specified
rate plus a positive or negative adjustment based on the firm’s current performance. If the
firm suffers a sustained period of poor performance, the manager’s promise can be lowered
sufficiently to reach zero, the ‘firing threshold’, at which point the incumbent is replaced by
a new manager who enters under a new contract with an exogenously given initial promise.

In contrast with other studies, the manager’s contract in our framework is also contin-
gent on the presence or not of a growth opportunity. If no growth opportunity becomes
available, the manager continues his tenure so long as his promise stays above the firing
threshold, and he is compensated with bonuses and performance-related changes in his
promise as just described. If a growth opportunity arises and the firm takes it, the manager
is replaced. However, not all growth opportunities are seized by all firms—even though
they would be under first best. Specifically, we show that, depending on the characteristics
of the firm and its environment, the optimal growth policy can be one of two types. For
some firms, it is optimal to take all growth opportunities as they come. For other firms, it is
optimal to forego opportunities that arise after periods of good performance, i.e., when the
incumbent manager’s promise is above a certain ‘growth threshold’. We refer to these two
different types of firms as high-growth and low-growth firms, respectively. In effect, optimal
incentive provision in low-growth firms calls for some degree of job protection against the
risk of growth-induced termination. Intuitively, the reason why job protection is granted
after a spell of good cashflows is that losses due to agency problems are diminished after
good performance, thus increasing the value of continuing with the incumbent manager
net of the foregone benefit of growth. In high-growth firms, the benefit of growth always
dominates.

Under the optimal contract, managerial compensation is affected by the possibility of
growth-induced turnover through the drift of the manager’s promise during his tenure. In
the absence of growth opportunities, this drift would simply be equal to the manager’s
discount rate. The key novelty in our setup is that, whenever the firm stands ready to
take an opportunity that might become available, the drift rate needs to be augmented
to compensate the manager for the risk of growth-induced termination, with the drift
modification depending on the arrival intensity of growth opportunities. This upwards
adjustment of the drift when the firm stands ready to take a growth opportunity explains
why firms with better growth prospects tend to have more front-loaded compensation. It
also sheds light on why low-growth firms grant job protection when past performance has
been good but not if it has been bad. A higher drift is indeed less costly to the firm after
poor performance, i.e., when the manager’s promise is close to the firing threshold, as it
reduces the likelihood of a subsequent inefficient, disciplinary turnover.

Our analysis explicitly allows for the possibility of lump-sum payments, and we show
that severance pay is suboptimal in our setting even in the case of growth-induced turnover.
Indeed, it is always better for the firm to increase the incumbent’s future promise conditional
on him being retained, thereby making inefficient termination less likely in the future, than
to give cash to a departing manager. However, we establish that an incoming manager may
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be given a ‘signing bonus’ if the required initial promise is high enough.
To derive these results on the second-best incentive contract, our approach roughly

follows the same logic as in previous continuous-time analyses of dynamic moral hazard.
First, we establish a state-space representation of long-term incentive contracts, where the
state process coincides with the manager’s promise as described above. Similar to other
studies, no stealing is incentive compatible under a dynamic contract if the sensitivity of
the manager’s promise to reported cashflows is large enough. We then formulate the firm’s
contracting problem recursively in order to characterize the optimal incentive-compatible
dynamic contract in the presence of stochastic growth opportunities. We show that the
firm’s size-adjusted value function can be characterized as the solution to a Hamilton-Jacobi-
Bellman (HJB) equation that incorporates the possibility of growth-induced turnover in an
intuitive way. This crucial step in the analysis is established through a verification theorem
from which follow the main properties of optimal compensation and turnover policies. Based
on the HJB, we also provide a characterization of the determinants of a firm’s growth type.
In particular, we show that low-growth firms tend to be those plagued with more severe
agency problems. This finding suggests that better governance can work as an effective tool
to promote economic growth.

Having characterized the optimal contract, we take full advantage of the dynamic na-
ture of our model and elaborate further on its implications for the distribution of tenure
length and for the timing of managerial compensation over tenure. These are complicated
objects, as they are partly determined by the firm’s type and the compensation and growth
thresholds, all of which are endogenous. Optimal thresholds are given by the free-boundary
points of rather involved free-boundary problems, and are shown to be implicitly defined as
solutions to highly non-linear equations. We thus employ numerical simulations to discuss
the impact of a firm’s growth prospects on turnover and compensation under the optimal
contract. The results illustrate the fact that firms with better growth prospects, in particu-
lar those with more attractive opportunities (i.e., holding their arrival intensity fixed), tend
to have shorter tenure length and more front-loaded compensation. Holding everything else
constant, average levels of managerial pay per period tend to be lower in firms with more
modest growth prospects, but they also tend to grow more markedly over tenure, which
contributes to a typically longer compensation duration for these firms.

Finally, we examine the data in light of the model. Merging data from CRSP, Compu-
stat and ExecuComp for U.S. public companies over the period 1992-2013, we investigate
empirically the links between firms’ growth prospects, CEO turnover, and CEO compensa-
tion. Following an extensive literature in empirical corporate finance, we use average Q to
capture the quality of firms’ growth opportunities. Namely, we proxy the ex ante growth
prospects of a firm at the time a new CEO is appointed by the lagged mean value of Q
measured at the industry level. We first sort CEO episodes along this proxy and compare
the distributions of tenure length and compensation duration across the highest and lowest
quantiles of growth prospects. In line with the model predictions, we find that the CEOs
of firms with better prospects tend to have shorter tenure and more front-loaded compen-
sation. We confirm these findings by regression analysis. In a probit model, our proxy for
firms’ growth prospects is positively related to the likelihood of turnover, controlling for
past performance. An increase in initial industry average Q by one standard deviation leads
to an increase in the probability of turnover by 82 basis points. Since the unconditional
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frequency of CEO turnover in our sample is 8.4%, the effect is economically significant. We
also find that the arrival of an opportunity, proxied by an increase in industry average Q
since the beginning of a CEO’s tenure, increases the probability of a turnover event, consis-
tent with the notion of growth-induced turnover. Furthermore, the likelihood of turnover
is less sensitive to the arrival of an opportunity when ex ante growth prospects were poor,
in line with the prediction that firms with more modest growth prospects are more likely
to insulate their managers from the risk of growth-induced turnover. Finally, we find that
managerial pay tends to be lower in firms with worse growth prospects, and that the slope
of the compensation profile over tenure years is more pronounced in such firms, which can
be viewed as a manifestation of their greater reliance on compensation back-loading.

The idea that the pursuit of valuable growth opportunities by a firm may rely on a
change of management is found in early contributions to the management literature, going
back to Penrose (1959). More recently, Roberts (2004) studies a number of business cases
where managerial limitations to firm growth play a prominent role and where a change of
management is instrumental in unlocking the growth potential of a firm.2 Bertrand and
Schoar (2003) provide compelling evidence that managers indeed matter for firm perfor-
mance and that they differ in their management styles. Bennedsen et al. (2012) further
report that CEO effects are particularly important in rapidly growing environments. Build-
ing on the idea that firm productivity is determined by the quality of the match between
the skill set of the manager and the current circumstances of the firm, Eisfeldt and Kuhnen
(2013) analyze a competitive assignment model of CEO turnover where the skills demanded
by the firm are subject to random shocks. In a similar vein, Jenter and Lewellen (2014)
extend the standard Bayesian learning model of CEO turnover (e.g., Harris and Holm-
ström (1982)) by allowing the quality of the firm-CEO match to vary over time. In contrast
with our work, these papers abstract from agency issues and incentive considerations which
occupy centre stage in our analysis.

Our paper relates to a large body of work that applies the tools of dynamic contracting
to the study of the firm in the presence of agency conflicts.3 In particular, Quadrini (2004),
Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007a), He (2008), Biais et al.
(2010, 2013), Philippon and Sannikov (2011), and DeMarzo et al. (2012) investigate the
link between moral hazard and firm growth when the firm can grow with the incumbent.
Our main theoretical contribution is to focus instead on growth-induced turnover and its
interactions with incentive provision. To the extent that the optimal contract in our setting
is contingent on the realization of observable shocks, our work also bears some similarity
with Piskorski and Tchistyi (2010) and Li (2015). More specifically, our framework builds
on the continuous-time cash diversion model of DeMarzo and Sannikov (2006),4 which we

2Also in the management literature, Chen and Hambrick (2012) document that, in turnaround situations,
troubled companies substantially improve performance when they replace incumbent CEOs who are poorly suited
to the conditions at hand with new ones who are well matched to those conditions.

3For seminal contributions to the literature on dynamic moral hazard, see Rogerson (1985) and Spear and
Srivastava (1987) in discrete time, as well as Holmström and Milgrom (1987) and Sannikov (2008) in continuous
time. Recent applications to the study of CEO turnover and compensation include among others, Spear and
Wang (2005), Hoffman and Pfeil (2010), He (2012), Edmans et al. (2012), and Garret and Pavan (2012, 2015).

4See DeMarzo and Fishman (2007b) for a discrete-time version, and Biais et al. (2007) for an analysis of
convergence from discrete to continuous time.
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extend to incorporate the stochastic arrival of growth opportunities. From a technical point
of view, our contributions are as follows. First, we introduce an additional source of uncer-
tainty beyond the Brownian cashflow shocks, which renders the derivation of the state-space
representation of the contract and the proof of the verification theorem substantially more
challenging. Second, in contrast with most of the literature, we consider a stationary envi-
ronment where the firm’s continuation value at the time of firing a manager is endogenous.
Third, we explicitly allow for jumps in the cumulative compensation process, which enables
us to assess the optimality of severance pay. Finally, our extensive analysis of the HJB
equation and associated free-boundary problems allows us to derive explicit existence and
uniqueness results, as well as comparative statics that are new to our setting.

The implications of our model and the evidence we provide are connected to a vast em-
pirical literature on the determinants of turnover and compensation for top management.5

The literature on CEO turnover has mostly focused on the link between turnover and per-
formance, as recently exemplified by Jenter and Lewellen (2014) and Jenter and Kanaan
(2015).6 We find that, controlling for performance, firms’ growth prospects also contribute
to explain the likelihood of CEO turnover. In terms of managerial compensation, the model
predictions are in line with Murphy (1999) who points out that pay packages often include
a bonus system based on the firm’s reported earnings in excess of a performance target.
They also echoe Kaplan and Minton (2012) who discuss the coincidence of shorter CEO
tenures and higher CEO pay in the time series. We add to existing empirical studies on
CEO compensation by investigating how the profile of CEO pay over tenure relates to firms’
growth prospects. The degree of reliance on deferred compensation has received relatively
little attention in the literature so far. An exception is the analysis by Clementi and Cooley
(2010) who exploit information on CEOs’ holdings of stocks and stock options to construct
a measure of deferred compensation. Gopalan et al. (2014) focus on the duration of a CEO’s
total compensation award in a given year based on information about the vesting periods
of separate components in the package. Instead, we measure the duration of compensa-
tion received over the entire tenure of a CEO and we document that this measure varies
negatively with the firm’s growth prospects at the time the CEO is hired.

The rest of the paper proceeds as follows. Section 1 describes our modelling setup and
derives the state-space representation of long-term incentive contracts. Section 2 charac-
terizes the optimal dynamic contract for high-growth and low-growth firms, as well as the
determinants of firm type. Section 3 employs simulations to discuss the implications of
our model for turnover and the timing of compensation. Section 4 presents the empirical
evidence. Section 5 concludes.

1 The Model

We consider a firm run by a sequence of managers protected by limited liability. The firm
and its managers are risk-neutral, with discount rates r and ̺, respectively. The firm’s

5For surveys of the literature on CEO compensation and on managerial incentive packages more generally, see
for instance Murphy (1999, 2013).

6Early studies include, among others, Coughlan and Schmidt (1985), Warner et al. (1988), Weisbach (1988),
Kim (1996), and Denis et al. (1997).
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operations generate a stream of instantaneous cashflows Φt dYt, where Φt denotes the size
of the firm at time t, and the cumulative size-adjusted cashflow process Y = {Yt} follows

dYt = µdt+ σ dZt, µ, σ > 0,

where Z = {Zt} denotes a standard one-dimensional Brownian motion. The firm starts
with unit size (Φ0 = 1) and can later expand. At any point in time, two conditions
must be met for the firm to expand: (i) it must have a growth opportunity, and (ii)
it must hire a new manager to take up the opportunity. Growth opportunities arrive
sequentially, independently of cashflow shocks, and the waiting time for the arrival of the
next opportunity is exponentially distributed with parameter q. If not taken immediately,
an opportunity is lost and no further growth is possible until a new one arrives.

The assumption that the firm cannot grow without a change of management is central to
our analysis. This assumption captures circumstances where value creation requires specific
managerial skills to carry out radical transformations of the firm, and the incumbent does
not have the ability to realize the firm’s growth potential. For convenience, we model
value enhancement as a discrete change in firm size that scales up the distribution of
cashflows. Namely, we assume that when it expands, the size of the firm increases by a
factor 1 + γ > 1. Firm growth, when it occurs, is the result of bringing in a new manager
able to take advantage of newly available opportunities—thereby achieving a permanent
increase in expected cashflows.7

The second main feature of the model is a standard agency problem arising from the
fact that, while running the firm’s operations, managers can divert cashflows. The residual
cashflow received by the firm is Φt (dYt − dAt), where A = {At} denotes the cumulative
size-adjusted amount of ‘stealing’.8 Managers enjoy a private benefit λ ∈ (0, 1] for each
unit of diverted cashflow, so that λ measures the severity of moral hazard.

The firm has deep pockets and can cover negative cashflows, as well as the costs as-
sociated with managerial compensation and turnover. Thus the firm’s decisions are not
driven by financing constraints. A manager hired to run the firm at size Φt receives ex-
pected discounted compensation w̄Φt, and the cost of replacing him is κΦt, where w̄, κ > 0
are given constants. The assumption that compensation is increasing in firm size is moti-
vated by the idea that larger operations require a different and less wide-spread skill set.9

Likewise, we assume that turnover costs, which include indirect costs such as disruption
of on-going business, are increasing in firm size.10 The stronger assumption that compen-
sation and turnover costs are both proportional to size is made to preserve tractability.11

The continuation value of a departing manager is normalized to zero.

7This may or may not involve an increase in the fixed assets of the firm. If it does, future scaled cashflows
should be thought of as net of the financing cost of capital investments.

8The stealing strategy A chosen by the manager is adapted to the Brownian filtration and has continuous
sample paths. Given that Y is continuous, any jump in A would be immediately detected by the firm.

9Empirically, executive pay is indeed positively correlated with firm size, both over time and across firms, as
documented by Kostiuk (1990), Murphy (1999), and Gabaix and Landier (2008).

10Estimates of the various costs associated with CEO transitions (including disruption costs) for mid-cap
companies are roughly twice as large as those borne by small-cap companies, and less than half the costs borne
by large-cap companies (Chief Executive Magazine, Nov/Dec 2008).

11Similar proportionality assumptions ensuring size homogeneity can be found in, e.g., Biais et al. (2010), and
DeMarzo et al. (2012).
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We further assume throughout the paper that

̺ > r, (1)

r > qγ, (2)
γµ

r
> κ+ (1 + γ)w̄, (3)

and we refer to parameter values that satisfy these conditions, along with the ones previously
imposed in this section, as permissible. Condition (1) requires that managers are more
impatient than the firm.12 Condition (2) imposes that the average growth rate when the
firm takes all growth opportunities is smaller than the firm’s discount rate, which ensures
finite valuation. Finally, together with (2), condition (3) implies that in the absence of
moral hazard, it would be optimal for the firm to take all growth opportunities—as we next
establish.

1.1 First-Best Policy

The first-best policy can be characterized as follows. First, the optimal compensation policy
involves giving to a manager a size-adjusted transfer w̄ at the outset of his tenure. Indeed,
since managers are more impatient than the firm, deferring compensation would affect
firm value negatively. Second, in order to save on replacement and hiring costs, managerial
turnover never occurs if not for the sake of taking a growth opportunity. Third, the optimal
growth policy involves either taking all growth opportunities or never taking any. If the
firm takes all opportunities, its expected discounted profit V ∗ satisfies

V ∗ = −w̄ + E

[
∫ τ

0
e−rtdYt + e−rτ

[

(1 + γ)V ∗ − κ
]

]

,

where τ is the random arrival time of the first growth opportunity. Solving for V ∗ under
the assumption that τ is exponentially distributed with parameter q yields

V ∗ =
µ− qκ

r − qγ
−

r + q

r − qγ
w̄.

If instead the firm foregoes all opportunities, its expected discounted profit is given by

−w̄ + E

[
∫ ∞

0
e−rtdYt

]

= −w̄ +
µ

r
.

It is straightforward to see that conditions (2) and (3) are sufficient for the inequality

V ∗ > max
{

−w̄ +
µ

r
, 0
}

to hold true, which guarantees that it would be optimal for the firm to take all growth
opportunities under first best.

12This assumption is standard in the dynamic contracting literature (e.g., DeMarzo and Sannikov (2006), Biais
et al. (2007, 2010), and DeMarzo et al. (2012)). The wedge in discount rates rules out indefinitely postponing
payments to managers.
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1.2 Long-Term Incentive Contract

We now turn to the case where managers can divert cashflows and stealing is not observable
by the firm. The firm enters into a long-term contract with each manager at the time of
his hiring, and both parties fully commit to the terms of the contract. A contract specifies
circumstances upon which the manager will be dismissed, including those when the firm
will take a growth opportunity, as well as the manager’s pay over the course of his tenure
based on the information that will become available to the firm over time. In particular, the
arrival of a growth opportunity is assumed to be perfectly observable and contractible. To
fix ideas and simplify the exposition, we initially restrict our attention to the contract with
the first manager. Readers interested in the technical aspects of the sequential contracting
environment are referred to Appendix A.

First, we discuss how dismissal and compensation are determined for a given stealing
strategy A chosen by the manager. The information accruing to the firm over time comes
from observing the cumulative reported cashflows Ŷ = Y − A, as well as the arrival of
growth opportunities. We denote by Ft the information gathered by the firm up to time t,
which includes information about the occurrence of growth opportunities. We denote by
F̂t ⊆ Ft the information coming only from the history of reported cashflows up to time t.

Dismissal of the manager can occur for two distinct reasons in our setting. First, the
manager can be sacked after a history of poor reported cashflows. Indeed, committing ex
ante to fire the incumbent after poor reported performance can be used by the firm as a
device to incentivize him not to steal. Second, the manager can be replaced in order to
take a growth opportunity that becomes available. Hence turnover is partly governed by
the firm’s growth policy, which determines the firm’s response to the potential arrival of a
growth opportunity. This policy is modeled by an (F̂t)-progressively measurable process
G = {Gt} taking values in {0, 1}, with Gt = 1 indicating that the firm stands ready to take
a growth opportunity at time t, and Gt = 0 indicating that it does not.13 Importantly, by
controlling G, the firm effectively determines the instantaneous intensity of growth-induced
dismissal, which is equal to qGt at time t. In view of these observations, the random time τ
at which the manager is fired can thus be represented as14

τ = τd ∧ τg,

where τd denotes an (F̂t)-stopping time and the random time τg satisfies15

P

(

τg > t
∣

∣ F̂t
)

= exp

(

−

∫ t

0
qGs ds

)

. (4)

13Note that Gt is set by the firm without knowledge of whether an opportunity arises or not at time t. In
Appendix C, we show that randomization of the growth decision, i.e., Gt ∈ (0, 1), is suboptimal.

14We use the notation x ∧ y to denote the minimum of x and y, i.e., x ∧ y = min{x, y}.
15The left-hand side of (4) denotes the probability that the manager has not been dismissed for the sake of

growth by time t, conditional on the history of reported cashflows up to time t. The right-hand side captures
the fact that the instantaneous intensity of growth-induced dismissal at time s ≤ t is qGs. When the firm stands
ready to take all growth opportunities, setting G ≡ 1, the probability that the manager survives the threat of
growth-induced termination up to time t is given by exp(−qt), reflecting the fact that the arrival of opportunities
is exponentially distributed with parameter q.
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In the event that τ = τd, the manager is replaced for the sake of incentive provision, which
we refer to as disciplinary turnover. When instead τ = τg, the manager is dismissed for the
sake of growth, which we refer to as growth-induced turnover.

Compensation to the manager over the course of his tenure is captured by an (F̂t)-
adapted cumulative compensation process C = {Ct}. Limited liability implies that C is
increasing. A positive jump ∆Ct represents a lump-sum payment at time t.16 In particular,
∆C0 and ∆Cτd denote a signing bonus and severance pay upon disciplinary dismissal,
respectively. To capture severance pay upon growth-induced turnover, we introduce a
separate (F̂t)-progressively measurable process S = {St}. The amount of severance received
by a manager dismissed for the sake of growth is given by Sτg .

Now considering the set A of all possible stealing strategies, a contract can thus be
viewed as a function mapping each stealing strategy A ∈ A to a collection

C = C(A), S = S(A), G = G(A), and τd = τd(A),

as just described. Such mapping should be consistent across stealing strategies in the sense
that any given history of reported cashflows should result in the same compensation and
termination outcomes, independently of the underlying combination of true cashflows and
stealing that gave rise to that observed history. The contract space G identifies with the set
of all functionals Γ : A 7→

(

C(A), S(A), G(A), τd(A)
)

on A that satisfy this requirement.

1.3 The Firm’s Problem

Given a contract Γ and a stealing strategy A, the manager’s expected discounted payoff at
the time of his hiring is given by

M(Γ, A) = E

[∫

[0,τ [
e−̺t

(

dCt + λdAt
)

+ e−̺τ
(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

)

]

.

For a given contract Γ, a stealing strategy A is said to be incentive compatible if it maximizes
the manager’s payoff. We refer to a contract as admissible if it is such that (i) no stealing is
incentive compatible, and (ii) the manager’s expected discounted payoff under no stealing
is w̄. Formally, the subset Ga of admissible contracts includes all contracts Γ ∈ G such that

M(Γ, 0) = sup
A∈A

M(Γ, A) and M(Γ, 0) = w̄.

Given an admissible contract Γ, the firm’s expected discounted profit at t = 0 is

F (Γ) = E

[
∫

[0,τ [
e−rt (µdt− dCt)

+ e−rτ
(

[Vd −∆Cτd − κ]1{τ=τd} + [Vg − Sτg − κ]1{τ=τg}

)

]

, (5)

16We assume that C is right continuous with left limits and C0− = 0, therefore ∆Ct = Ct−Ct− and ∆C0 = C0.
Further technical details on the modelling of long-term incentive contracts are given in Appendix A.1.

9



where Vd and Vg denote the firm’s continuation values after dismissal of the first manager
(for disciplinary reasons or upon growth, respectively), which we endogenize later in Sec-
tion 2.17 The firm’s problem is to find an admissible contract that maximises its expected
discounted profit. Formally, the firm’s objective is to find Γ∗ such that

F (Γ∗) = sup
Γ∈Ga

F (Γ).

1.4 Admissible Dynamic Contracts

As observed in previous work on dynamic moral hazard, the challenge of analyzing this type
of environment comes from the complexity of the contract space and from the difficulty
of evaluating the agents’ incentives in a tractable way. In this section, we build on the
approach of DeMarzo and Sannikov (2006), Sannikov (2008), and Biais et al. (2007, 2010),
and consider a state-space representation of incentive contracts. Under no stealing, the
state variable in this representation should coincide with the manager’s expected payoff.
As a preliminary step, we therefore characterize the process followed by

Mt = E

[∫

]t,τ [
e−̺(s−t)dCs + e−̺(τ−t)

(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

) ∣

∣

∣
Ft

]

, t < τ,

which corresponds to the manager’s expected future payoff at time t < τ when he refrains
from stealing.

Lemma 1. For any given any contract Γ ∈ G, there exists a process β = {βt} such that

dMt =
[

̺Mt + qGt(Mt − St)
]

dt− dCt + σβt dZt, for t < τ. (6)

Proof. See Appendix B.1.18

The presence of the diffusion term in the dynamics of the agent’s expected payoff is very
natural. Since compensation and dismissal policies are contingent on the history of re-
ported cashflows, the evolution of the manager’s expected future payoff under a long-term
incentive contract is sensitive to currently reported cashflows. The process β can precisely
be interpreted as the sensitivity induced by a long-term contract. Since reported cashflows
coincide with true cashflows when the manager refrains from stealing, the stochastic evo-
lution of the manager’s expected payoff under no stealing Mt is directly driven by the true
cashflow shocks dZt.

17In Appendix A.2, we provide an expression for the firm’s value at t = 0 for a given sequence of admissible
contracts. In particular, when the same admissible contract Γ is offered to all managers, we show that the firm’s
size-adjusted expected discounted profit F (Γ) satisfies (5) with Vd = F (Γ) and Vg = (1 + γ)F (Γ). Note that we
make the usual assumption that, if no stealing is incentive compatible, the manager does not steal. We restrict
our attention to contracts that implement no stealing, which is standard in the literature when moral hazard is
modelled as a cash diversion problem (e.g., see DeMarzo and Sannikov (2006)).

18In our model, uncertainty is not only driven by the Brownian cashflow shock but also by the stochastic arrival
of growth opportunities. As a result, the derivation of (6) does not simply rely on the martingale representation
theorem, as in the standard martingale approach developed by Sannikov (2008), but also on a “change of filtration”
formula and other techniques borrowed from the credit risk literature.
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In light of Lemma 1, we consider dynamic contracts whose implementation is driven by
a state process W = {Wt} that evolves as

dWt =
[

̺Wt + qGt(Wt − St)
]

dt− dCt + βt (dŶt − µdt). (7)

Along with compensation and growth policies, a dynamic contract specifies the sensitivity
β of the state variable W to the reported cashflows. Importantly, since the dynamics of the
state variable are driven by processes that are either observed or controlled by the firm, its
evolution over time can be tracked by the firm. While growth-induced turnover is jointly
determined by the growth policy and the random arrival of opportunities, disciplinary
dismissal occurs when the state process W hits zero, namely,

τd = inf{t ≥ 0 : Wt = 0}. (8)

Noting that dŶt−µdt = −dAt+σ dZt, it is straightforward to see that, when the manager
refrains from stealing, the dynamics of the state process become

dWt =
[

̺Wt + qGt(Wt − St)
]

dt− dCt + σβt dZt (9)

and therefore mirror (6). Indeed, when the manager refrains from stealing, the value taken
by the state variable at any time during his tenure does coincide with his expected future
compensation under the contract, as stated in the following lemma.

Lemma 2. Consider a dynamic contract with termination occurring at time τ = τg ∧ τd,
where τg satisfies (4) and τd is defined by (8) where W follows (7) for some initial condition
W0− = winit > 0. Then the manager’s expected future payoff at time t < τ if he refrains
from stealing is equal to Wt, namely,

Wt = E

[∫

]t,τ [
e−̺(s−t)dCs + e−̺(τ−t)

(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

) ∣

∣

∣Ft

]

(10)

on the event {t < τ}. Moreover, if β ≥ λ, it is optimal for the manager not to steal.

Proof. See Appendix B.3.

Equation (10) confirms that the state process W under a dynamic contract can be inter-
preted as the manager’s expected future payoff if he refrains from stealing, which we shall
refer to as the manager’s promise. Lemma 2 also establishes an incentive compatibility
condition.19 The condition is intuitive: since he enjoys a private benefit λ per unit of di-
verted cash, incentivizing the manager not to steal requires that his promise increases by
at least λ for each extra unit of reported cashflow, namely, β ≥ λ. A dynamic contract is
admissible if it satisfies this condition along with the initial promise condition W0− = w̄.
Since β ≥ λ > 0 under an admissible dynamic contract, (7) and (8) imply that inefficient
disciplinary turnover occurs as the result of poor reported cashlows.

Before proceeding further, it is important to observe that, relative to the environment
considered in DeMarzo and Sannikov (2006), the introduction of growth-induced turnover

19This result extends the incentive compatibility condition derived in DeMarzo and Sannikov (2006) to our
environment with growth-induced turnover.
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affects the dynamics of the agent’s promise in a substantial way. The key difference lies
in the drift of the promise, which in our setup is equal to ̺Wt + qGt(Wt − St) instead of
simply ̺Wt. The reason for this difference is that, whenever the manager is put at risk of
being fired for the sake of growth (i.e., whenever Gt = 1), he needs to be ‘compensated’
for the loss that he would incur in case a growth opportunity arises. The potential loss
corresponds to the difference (Wt − St) between the manager’s current promise and the
amount of severance pay that he would receive if replaced for the sake of growth,20 while
the chances of incurring such loss are determined by the instantaneous intensity of growth-
induced dismissal qGt. Compensation for the risk of growth-induced termination comes in
the form of an augmented drift, which translates into a faster increase of the manager’s
promise in states of the world where no growth opportunity materializes. In other words,
the law of motion for the agent’s promise is modified in our setup in such a way that the
promise keeping condition remains satisfied.

2 Optimal Dynamic Contract

Having characterized the set of admissible dynamic contracts, we reformulate the firm’s
optimization problem as a stochastic control problem. We denote by V (φ,w) the firm’s
value function, which gives the firm’s expected discounted profit at a given current size
φ and for a given current size-adjusted promise w to the incumbent manager. The firm’s
value function satisfies the recursive dynamic programming equation

V (φ,w) = sup
C,S,G,β

E

[

φ

∫

[0,τ [
e−rt(µdt− dCt)− φe−rτ

(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

)

+ e−rτ
(

−κφ+ V (φ, w̄)1{τ=τd} + V
(

(1 + γ)φ, w̄
)

1{τ=τg}

)

]

, (11)

where τ = τd ∧ τg, subject to the incentive compatibility constraint β ≥ λ, and subject to
(4), (8) and (9) with initial condition W0− = w. In this formulation, C and S denote the
manager’s size-adjusted cumulative compensation and size-adjusted severance upon growth,
respectively. Since cashflows, turnover costs and initial promises are all proportional to firm
size, it follows that firm value itself is homogenous in size, namely,

V (φ,w) = φV (1, w) =: φv(w). (12)

In particular, stationarity and size homogeneity imply that the firm offers the same dynamic
contract to all successive managers. Using (11) and (12), the size-adjusted value function
v(w) is determined along with the optimal contract by

v(w) = sup
C,S,G,β

E

[ ∫

[0,τ [
e−rt(µdt− dCt)− e−rτ

(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

)

+ e−rτ
(

−κ+ v(w̄)1{τ=τd} + (1 + γ)v(w̄)1{τ=τg}

)

]

(13)

20We later show that under the optimal contract, a manager receives no severance when dismissed for the
sake of growth. The potential loss upon growth-induced termination is therefore equal to Wt under the optimal
contract.
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subject to the same constraints as above. The following proposition is central to our char-
acterization of the optimal dynamic contract.

Proposition 1. Let u : R+ → R be a concave C2 function that satisfies the Hamilton-
Jacobi-Bellman (HJB) equation

max

{

σ2λ2

2
u′′(w) + ̺wu′(w) − ru(w) + µ

+ q
[

(1 + γ)u(w̄)− κ+ wu′(w) − u(w)
]+
, −u′(w) − 1

}

= 0, (14)

with boundary condition

u(0) = u(w̄)− κ. (15)

Also, suppose that limw↓0 |u
′(w)| <∞ and u′(w) = −1 for some w <∞. Then the function

u identifies with the value function v defined by (13), namely, v(w) = u(w) for all w ≥ 0.
Moreover, the optimal dynamic contract satisfies Properties 1-5 listed below.

Proof. See Appendix C.

We rely on Proposition 1 to construct the firm’s value function and solve for the optimal
dynamic contract. As observed in previous work on dynamic moral hazard, the concavity
of the value function is related to the fact that a change in w affects firm value not only
directly by increasing the amount of compensation owed to the manager, but also via its
impact on the likelihood of disciplinary turnover. Indeed, by reducing the prospect of a
costly disciplinary turnover, an increase in the agent’s promise by one dollar effectively costs
less than one dollar to the firm. Moreover, since the probability of disciplinary turnover is
higher after poor performance, the reduction in agency costs induced by a marginal increase
in the agent’s promise is larger for low values of w. This is what gives rise to concavity.

2.1 Optimality Properties

We now turn to the properties satisfied by the optimal dynamic contract, as implied by
Proposition 1. These impose restrictions on the cashflow sensitivity, on the compensation
policy, and on the growth policy. The first two properties are standard. In particular,
they also hold in the absence of growth opportunities, and are derived in that context by
DeMarzo and Sannikov (2006), and Biais et al. (2007).21

Property 1. The optimal contract has sensitivity to reported cashflows β = λ.

The fact that the incentive compatibility constraint should hold as an equality (β = λ)
is related to the concavity of the value function. Intuitively, reducing the volatility of the
manager’s promise as much as possible while satisfying incentive compatibility is optimal
for the firm because it lowers the probability that the promise hits zero, which would result
in ex post inefficient disciplinary turnover.

21From a broader perspective, the claims stated in Property 2 are inherited from standard features of the solution
to singular stochastic control problems such as the one given by (13); see Beneš et al. (1980) and Karatzas (1983)
for early references.
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Property 2. The optimal compensation policy is such that the manager receives transfers
only if his current promise w is at least wc. The compensation threshold wc satisfies

v′(wc) = −1.

This property can be explained heuristically by observing that, at any instant, the firm has
the option to make an immediate transfer to the manager and continue optimally. Hence,
the inequality v(w) ≥ −ε + v(w − ε) holds for any transfer ε, which implies v′(w) ≥ −1.
When the manager’s current promise w is such that v′(w) > −1, deferring compensation
is optimal. By concavity of the value function, this happens when w is below the point wc

that satisfies v′(wc) = −1. In this case, the manager receives no compensation until his
promise reaches the compensation threshold. If w̄ > wc, the manager receives a signing
bonus ∆C0 = w̄−wc when appointed, and his promise later remains in the interval [0, wc].

22

Property 3. The optimal compensation policy involves no severance payment, namely,
∆Cτd = 0 and S = 0.

Severance pay is suboptimal in our setup, even in the case of growth-induced termination.
The reason is that, rather than give cash to a departing manager, the firm is always better
off increasing the promise of the incumbent conditional on him being retained, which has
the benefit of reducing the likelihood of inefficient turnover later on.23 It is worthwhile
to note that the no-severance result upon growth-induced dismissal relies crucially on the
assumption that the arrival of a growth opportunity is contractible.24

Property 4. It is optimal for the firm to stand ready to take a growth opportunity if and
only if the manager’s current promise w is such that

(1 + γ)v(w̄)− κ+ wv′(w) ≥ v(w). (16)

Condition (16), which we shall refer to as the growth optimality condition, determines
the circumstances under which growth-induced turnover can occur. The inequality reveals
that the optimal growth policy does not just rely on a comparison between the status quo
continuation value v(w) and the continuation value upon growth (1 + γ)v(w̄) − κ. The
extra term wv′(w) accounts for the fact that putting the manager at risk of being fired if a
growth opportunity arrives requires to compensate him in the form of an augmented drift,

22Technically, the agent’s promise W is reflected at wc by the cumulative compensation process. A rigorous
construction of this process is provided in Appendix C (see Theorem C-2). One way in which the introduction
of stochastic growth opportunities and growth-induced turnover modifies the firm’s pay policy is by affecting the
value of the optimal threshold wc, as shown in Section 2.3 for the high-growth case.

23By the same logic, severance pay would be suboptimal in a simpler setting with exogenous random exit of
the manager. We are grateful to an anonymous referee for making this observation.

24In an earlier version of this paper, we analyzed the case in which the availability of a growth opportunity
is privately observed by the incumbent manager and showed that, in that case, severance upon growth-induced
dismissal arises as part of the optimal contract (See Anderson et al. (2012), Section 6). This result is reminiscent
of Eisfeldt and Rampini (2008) and Inderst and Mueller (2010), although in our model severance is used to
incentivize the incubent to reveal good news. Malenko (2013) also considers an environment with privately
observed investment opportunities. Severance pay upon disciplinary dismissal arises in the setup analyzed by He
(2012) with risk-averse agent and private savings.
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as discussed in Section 1.4. When the firm’s value function is decreasing at the current value
of the agent’s promise (i.e., v′(w) < 0), this higher drift constitutes a cost. If this cost is high
relative to the potential gains from growth, so that (1+γ)v(w̄)−κ+wv′(w)−v(w) < 0, it is
optimal for the firm to insulate the incumbent manager from the risk of being replaced, and
thus forego growth opportunities when they become available. We refer to this possibility
as contractual job protection.

Property 5. If partial job protection arises as part of the optimal contract, the firm foregoes
growth opportunities if the manager’s promise w is above wg, where the growth threshold
wg satisfies

wg = sup
{

w ≥ 0 : (1 + γ)v(w̄)− κ+ wv′(w)− v(w) ≥ 0
}

< wc.

This property indicates that, if some degree of job protection arises as part of the opti-
mal incentive contract, managers are shielded from the risk of growth-induced turnover
after good performance. Intuitively, the benefit of retaining the incumbent, net of the fore-
gone gains from growth, is increasing in w because losses due to moral hazard under the
incumbent are dimished after good performance.25

2.2 Two Types of Firms

In light of our discussion of Properties 4 and 5, two configurations can arise. In the first
one, the growth optimality condition (16) holds for all values of the manager’s promise
w ∈ [0, wc]. We refer to firms falling into this configuration as high-growth firms. In such
firms, managers are fully exposed to the risk of being fired for the sake of growth, and the
instantaneous rate of growth-induced turnover is always equal to q. Over the course of the
manager’s tenure, the firm keeps track of the evolution of

dWt = (̺+ q)Wt dt− dCt + λ (dŶt − µdt), W0− = w̄,

where transfers dC reflect the manager’s promise W at the endogenous compensation
threshold wc. Transfers to the manager can be interpreted as bonuses indexed on reported
performance.26 The manager is dismissed when a growth opportunity arises or when W
hits zero, whichever comes first.

By contrast, in the second possible configuration, the growth optimality condition does
not hold everywhere on the interval [0, wc], and some degree of job protection is part of
the optimal contract. We refer to firms falling into the latter configuration as low-growth
firms. The contract offered by a low-growth firm specifies, along with a compensation

25In other words, the net benefit of exposing a manager to the risk of growth-induced termination is decreasing
in the manager’s promise, which can be seen from the fact that (1 + γ)v(w̄) − κ + wv′(w) − v(w) is decreasing
in w, by concavity of v. Our finding that, in some firms, growth may only occur after poor performance is in
contrast with the result obtained in setups where the firm can grow through investment with the incumbent (see,
e.g., DeMarzo and Fishman (2007a)). In such settings, growth is positively related to past performance because
the return on investment is higher after good cashflows, also due to a reduction in agency costs.

26In both types of firms, transfers to the manager are increasing in reported cashflows net of the expected level
of cashflows. This feature of the contract is qualitatively in line with the use of bonus systems based on reported
earnings in excess of a performance target, as documented in Murphy (1999).
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threshold wc, a growth threshold wg < wc. Over the course of the manager’s tenure, the
firm keeps track of

dWt =
[

̺+ q1[0,wg](Wt)
]

Wt dt− dCt + λ (dŶt − µdt), W0− = w̄,

where transfers dC reflect W at wc. The manager is dismissed if a growth opportunity
arises at a time when Wt ≤ wg, or when W hits zero, whichever comes first. Consistent
with our discussion of Property 5, the optimal contract in low-growth firms commands that,
whenever the manager’s promise is above the growth threshold wg, the firm foregoes any
growth opportunity that becomes available.27

It might not seem obvious that the low-growth configuration could ever be optimal,
given that condition (3) guarantees that foregoing growth opportunities is inefficient under
first best. The intuition is that, in the presence of moral hazard, a firm faces this ex ante
tradeoff: a policy of always standing ready to pursue growth by appointing a new, more
suitable manager has the advantage of producing higher expected cashflows, but it entails
increased early termination risk for incumbent managers and a higher cost of incentive
provision during their tenure. Indeed, putting a manager at risk of being replaced for the
sake of growth effectively makes him more impatient, as revealed by the fact that the agent’s
‘effective’ discount rate is augmented from ̺ to ̺+ q. Therefore, insuring managers against
early termination risk can make it cheaper to incentivize them. In low-growth firms, the
resolution of the tradeoff between efficient turnover and the cost of incentive provision gives
rise to an ‘interior’ solution, whereby the optimal contract allows for job protection after
good performance.28

2.3 High-Growth Firms

In this section, we further characterize the optimal contract offered by a high-growth firm.
To this end, we consider the free-boundary problem that consists in finding a free-boundary
point wc and a function u that satisfies the ODE

σ2λ2

2
u′′(w) + (̺+ q)wu′(w)− (r + q)u(w) + µ+ q

[

(1 + γ)u(w̄)− κ
]

= 0 (17)

in the interval (0, wc), is given by

u(w) = u(wc)− (w − wc), if w > wc, (18)

and satisfies the boundary conditions

u(0) = u(w̄)− κ, u′(wc) = −1 and u′′(wc) = 0. (19)

27The manager being partially shielded from the risk of growth-induced turnover might be described as an
endogenous form of ‘entrenchment’. We do not use this word because it more commonly connotes actions taken
by a manager to make his replacement costly. A number of recent papers explore frameworks very different from
ours where they establish conditions under which managers are protected from termination. See, e.g., Atkeson
and Cole (2008), Casamatta and Guembel (2010), and Garrett and Pavan (2012).

28A third possible configuration involves fully isolating the managers from the risk of growth-induced termina-
tion, which corresponds to (16) being violated for all values of w ∈ [0, wc]. However, we show in Appendix E.5
that this ‘no-growth’ policy can only be optimal if v(w̄) < 0, so that the firm would rather not operate. We do
not expand further on this case in the remainder of our analysis.
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Proposition 2. Given any permissible values of (r, ̺, µ, σ, q, γ, λ, κ, w̄) in R9, there exists
a unique solution (u,wc) to the free-boundary problem defined by (17)–(19). The function
u is C2 and concave, and satisfies the HJB equation

max

{

σ2λ2

2
u′′(w) + (̺+ q)wu′(w)− (r + q)u(w)

+µ+ q
[

(1 + γ)u(w̄)− κ
]

, −u′(w) − 1

}

= 0.

Furthermore, the following statements hold true:

i. The set of permissible parameter values for which u satisfies (16) for all w ∈ [0, wc], and
therefore the HJB equation (14), has non-empty interior in R9.

ii. There exists a unique w̄† = w̄†

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

such that

w̄ ≤ w̄† ⇔ wc > w̄ and w̄ = w̄† ⇔ wc = w̄.

iii. If w̄ = w̄†, u satisfies (16) for all w ∈ [0, wc] and the HJB equation (14) if and only if

γµ ≥ rκ+ (r + γ̺)w̄. (20)

Proof. See Appendix E.2.

In view of Proposition 1 and the general properties of the solution to the free-boundary
problem established in Proposition 2, statement (i) implies that, for a large set of permis-
sible parameter values, the firm is of the high-growth type. For such parameter values,
the firm’s size-adjusted value function and the optimal compensation threshold are given
by the solution to the free-boundary problem (17)–(19). Figure 1 illustrates the firm’s
value function and the optimal compensation threshold in the high-growth configuration
for particular parameter values.

[FIGURE 1 HERE]

Statement (ii) sheds light on how the optimal compensation policy plays out at the
start of a manager’s tenure in a high-growth firm. Depending on the value of the starting
promise w̄, three scenarios can arise. When the initial promise is relatively low, in the
sense that w̄ < w̄†, the compensation threshold is optimally set above the initial promise
(wc > w̄). In this scenario, a newly hired manager does not receive any pay for some time
until the effect of the positive drift ̺+q, possibly combined with good cashflow realizations,
finally takes his promise up to the compensation threshold wc. In contrast, if the starting
promise is high enough (w̄ > w̄†), a manager receives a signing bonus ∆C0 = w̄ − wc > 0
when appointed. In the knife-edge case w̄ = w̄†, the manager starts receiving compensation
immediately after taking office.

Statement (iii) provides an explicit condition on exogenous parameter values for the
firm to be a high-growth type. Condition (20) suggests that high-growth firms tend to be
the ones that are more productive (high µ) or have better opportunities (high γ). Our next
proposition gives further insight on the characteristics of high-growth firms.
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Proposition 3. Consider any permissible values of (r, ̺, µ, σ, q, γ, λ, κ, w̄) in R9 such that
w̄ = w̄† and condition (20) holds with equality. A marginal increase in λ or κ, or a marginal
decrease in q, leads condition (20) to fail.

Proof. See Appendix E.3.

In view of statement (iii), this result suggests that high-growth firms also tend to be
characterized by not-too-severe moral hazard, low turnover costs, and more frequent growth
opportunities. Although the statement of Proposition 3 is not generic, extensive numerical
analysis confirms that these findings hold more generally.29

Finally, we characterize the determinants of the optimal compensation threshold in
high-growth firms with the following proposition.

Proposition 4. Consider (r, ̺, µ, σ, q, γ, λ, κ, w̄) in the interior of the set of permissible
parameter values for which the firm is a high-growth type.

i. The optimal compensation threshold wc is increasing in κ, and independent of µ and γ.

ii. If the parameter values are initially such that w̄ = w̄†, then a marginal increase in λ
or σ leads to an increase in wc, whereas a marginal increase in q leads to a reduction in wc.

Proof. See Appendix E.4.

As the severity of moral hazard, the volatility of cashflows, or the cost of managerial replace-
ment increases, the compensation threshold is raised to reduce the likelihood of inefficient
turnover. On the other hand, an increase in the arrival rate of growth opportunities, by in-
creasing the manager’s effective discount rate, results in a lower compensation threshold.30

Holding the dynamics of the manager’s promise constant, a lower (resp., higher) compensa-
tion threshold results in more front-loaded (resp., back-loaded) compensation. We further
discuss the implications of our model for the timing of compensation in Section 3.2.

2.4 Low-Growth Firms

We now turn to the low-growth configuration. In light of Proposition 1 and Property 5, we
consider the free-boundary problem that consists in finding two free-boundary points wc

and wg < wc and a function u that satisfies the ODE

σ2λ2

2
u′′(w) + (̺+ q)wu′(w)− (r + q)u(w) + µ+ q

[

(1 + γ)u(w̄)− κ
]

= 0 (21)

in the interval (0, wg), satisfies the ODE

σ2λ2

2
u′′(w) + ̺wu′(w) − ru(w) + µ = 0 (22)

29The same comment applies to the results stated in Proposition 4.(ii).
30The result that the optimal compensation threshold wc is unaffected by the mean size-adjusted cashflow µ

differs from the one derived in DeMarzo and Sannikov (2006), where wc is increasing in µ. The reason for this
difference is that the firm’s continuation value upon termination is exogenously given in their setup, whereas it
is endogenously determined in ours.
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in the interval (wg, wc), is given by

u(w) = u(wc)− (w − wc), if w > wc, (23)

satisfies the boundary conditions given by (19), and satisfies the requirement that

u(wg)− wgu
′(wg) = (1 + γ)u(w̄)− κ. (24)

The analysis of this problem allows us to establish that, despite the assumption that fore-
going growth opportunities is suboptimal under first best, the low-growth configuration can
arise, as stated in the following proposition.

Proposition 5. The set of permissible parameter values for which the solution u to the
free-boundary problem defined by (19) and (21)–(24) is C2 and concave, and satisfies the
HJB equation (14), has non-empty interior in R9. For such parameter values, the firm is
a low-growth type.

Proof. See Appendix F.3.

In low-growth firms, the optimal contract is as described in Section 2.2, with growth
and compensation thresholds given by the free-boundary points wg, wc of the free-boundary
problem defined above.31 Figure 2 depicts the firm value function along with the optimal
thresholds in the low-growth configuration for particular parameter values. The figure also
represents what the value of the firm would be if it were constrained to systematically take
all growth opportunities as they come. The distance between the two curves on the figure
illustrates the benefit that a low-growth firm derives from offering partial job protection to
its managers, which can ultimately be traced back to a reduction in agency costs.

[FIGURE 2 HERE]

3 Empirical Implications

In this section, we further discuss the predictions of our model, focusing on the implications
of growth-induced turnover. Namely, we investigate how a firm’s growth prospects affect
managerial turnover and pay. To do so, we rely on the analytical results of Section 2 and
supplement those with numerical illustrations. Simulations of managerial spells under the
optimal contract are used to characterize the distribution of the random dismissal time and
aspects of the compensation process—as well as their dependence on model parameters.
In Section 4, we draw on the insights gained from simulations to interpret some of our
empirical findings through the lens of the model.

31In Appendix F.1, we derive three possible systems of highly non-linear equations that the points wg and wc

should satisfy, depending on their location relative to w̄; see in particular Problem F-0. Given the complexity of
this problem, providing a complete characterization of its solution with a view to deriving a suitable solution to
the HJB equation (14) with boundary condition (15) is beyond the scope of this paper.
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3.1 Dismissal Probability and Tenure Length

In our setup, the probability of an incumbent manager being dismissed depends on the
past performance of the firm under his tenure, but also on the availability of a growth
opportunity and on the ex ante characteristics of the firm that affect the turnover policy.
First, the likelihood of dismissal increases with poor performance—both because a string
of bad cashflows can result in disciplinary turnover and because, in some firms, growth-
induced turnover only occurs after poor performance. Second, holding performance and
firm characteristics constant, the probability of dismissal also increases (at least weakly)
upon arrival of a growth opportunity. Finally, the probability of turnover depends on firm
characteristics, to the extent that these affect the contract specification and the degree of
protection granted to the manager. In particular, firms with better growth prospects should
show a higher turnover rate.

To see this last point, we consider two firms that are identical in every dimension except
for the size (γ) of the growth opportunities they might receive. For the sake of illustration,
we take as common parameter values across the two firms r = 7%, ̺ = 16%, µ = 1,
σ = 1, q = 0.2, λ = 0.4, κ = 0.3, w̄ = 1. In the firm with better growth prospects, we
set γ = 0.25, while we set γ = 0.10 in the other firm.32 The difference in the quality of
growth opportunities faced by the two firms makes the former a high-growth type (i.e., a
manager in this firm is never immune to the risk of growth-induced termination), and the
latter a low-growth type (i.e., managers are protected from growth-induced turnover after
good performance). The average annualized turnover rate in these two firms are 21.4% and
5.5%, respectively. Naturally, changes in growth prospects driven by the arrival rate (q) of
growth opportunities have similar effects. To see this, we consider variations in q around
the high-growth and low-growth baselines. For the high-growth firm, an increase in the
frequency of growth opportunities from q = 0.20 to q = 0.22 causes the average turnover
rate to rise to 23.2%, while setting q = 0.18 causes the turnover rate to drop to 19.4%.
For the low-growth firm, the same variations in q cause the average turnover rate to rise to
5.7% or drop to 5.3%, respectively.

The model predictions on the likelihood of turnover translate into implications for the
distribution of tenure length. Figure 3 depicts the cumulative distribution of tenure length
in the two baseline examples. The probability distribution of tenure length for the low-
growth firm first-order stochastically dominates the one for the high-growth firm, i.e., the
probability of a manager reaching any given number of tenure years is higher in the low-
growth firm. The median tenure length of a manager is 3.3 years in the firm with better
growth prospects (γ = 0.25), whereas it is 12.6 years in the firm with poorer growth
prospects (γ = 0.10). Changes in the quality of growth prospects driven by the arrival rate
of growth opportunities q affect tenure length in a similar way: increasing the frequency of

32These parameter values are permissible (see conditions (1)–(3)). In particular, the firms’ growth prospects
are sufficiently attractive as to make taking all growth opportunities optimal in the absence of moral hazard.
Discount rates r and ̺, and the intensity rate q, are expressed on an annual basis. Given the normalization µ = 1,
parameters σ, κ, and w̄ are effectively expressed in terms of annual mean cashflow. For given parameter values, we
first determine the firm’s type and the optimal contractual threshold(s) by solving numerically the free-boundary
problems associated with the HJB equation (14)–(15), as described in Sections 2.3 and 2.4. The average turnover
rate is then obtained from simulating the dynamics of the promise W under the optimal contract until dismissal
for a very large number of managers.
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growth opportunities from q = 0.20 to q = 0.22 causes the median time in office to drop
to 3.0 years and 12.1 years, respectively; whereas switching to q = 0.18 causes that time to
rise to 3.6 years and 13.1 years, respectively.

[FIGURE 3 HERE]

3.2 Compensation

Deferred compensation constitutes an essential feature of the optimal dynamic contract
under moral hazard. It is well-understood that the degree of compensation back-loading
should depend on the severity of moral hazard (λ), the cashflow volatility (σ), and the
wedge between the manager’s and the firm’s discount rates (̺− r). In our setup, the extent
of back-loading is also affected by the prospect of growth-induced turnover.33

We illustrate this aspect of our model by simulating managerial compensation under the
optimal contract. First, we characterize the degree of back-loading using the notion of com-
pensation duration. Namely, for a given sequence of bonuses received by a manager over his
entire tenure, we compute the weighted average of the points in time when compensation is
received—with weights equal to the fraction of the total discounted pay (using the agent’s
discount rate ̺) received at each point in time.34 Figure 4 depicts the cumulative distribu-
tion of realized compensation duration in the two baseline configurations introduced in the
previous subsection. The relative position of the two distributions reflects the fact that,
holding the level of expected discounted pay w̄ constant across firms, compensation is more
front-loaded in firms with better growth prospects. On average, compensation duration is
2.2 years in the high-growth firm, versus 4.8 years in the low-growth firm.35

[FIGURE 4 HERE]

To further characterize the impact of growth-induced turnover on the timing of com-
pensation, we compute average compensation profiles over tenure in the high-growth and
low-growth baselines. Namely, in any given firm, we compute the average pay received by
managers as a function of time since appointment, conditional on still being in office. Fig-
ure 5 depicts these profiles in logs and illustrates key differences across firms, both in levels
and in growth rates. In both firms, compensation profiles are increasing at the beginning
of tenure and then reach a plateau. That the expected amount of compensation remains
flat after a certain level of seniority reflects the fact that, in our model, the distribution
of cashflows remains constant under a manager’s tenure—since, by assumption, growth en-
tails a change of management. That the expected amount of compensation increases at
the beginning of tenure reflects the fact that the optimal contract in both firms specifies a

33Compensation under the optimal contract comes in the form of bonuses that the manager receives whenever
his promise reaches the endogenous compensation threshold wc (see Property 2 for a precise characterization).
The analysis in Section 2 reveals that firms’ growth prospects affect the timing of pay both through the drift of
the manager’s promise and the level of the compensation threshold.

34Compensation duration is formally defined as
(∫ τ

0
e−̺t dCt

)−1 ∫ τ

0
te−̺t dCt, in line with the notion of bond

duration used in interest rate risk management. In simulations, we use the discretized version of this expression.
35The high-growth and low-growth baselines only differ in terms of the size of growth opportunities (γ). An

increase in the arrival rate of growth opporunities (q) also results in lower compensation duration.
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compensation threshold wc above the starting promise w̄ so that, at the beginning of their
tenure, only the most lucky managers receive a bonus, whereas later on, thanks to the up-
ward drift of the promise W , managers can reach the compensation threshold even with an
‘average’ performance record. Comparing the profiles across firms, we make the following
observations. First, at any level of seniority in the job, average compensation is higher in
the firm with better growth prospects. This difference in compensation levels is required
to guarantee that, despite different ‘survival’ probabilities, managers in both firms receive
the same expected discounted payoff. Second, the firm with poorer growth prospects is
characterized by more protracted and higher compensation growth over tenure—which is
another manifestation of the greater extent of back-loading in such firms.

[FIGURE 5 HERE]

4 Empirical Evidence

In this section, we present empirical evidence that is consistent with the notion of growth-
induced turnover and the model’s implications illustrated in Section 3. We first investigate
the empirical determinants of CEO turnover in the light of our model. We then explore the
relation between the timing of CEO compensation and firms’ growth prospects.

4.1 Data

Our empirical analysis relies on information on CEO tenure episodes in US public firms as
reported in the Standard & Poor’s ExecuComp database for the period 1992-2013.36 Once
we merge the ExecuComp sample with accounting information from Compustat and stock
return data from CRSP, our sample comprises 4,386 CEO episodes. Out of these, 2,398
episodes cover the full tenure of the CEO from the year the CEO is appointed until the
year of leaving post. The total number of CEO-year observations in our sample is 30,599.37

The minimum number of firms covered in a given year is 925 in 1992, and the maximum is
1,647 in 2004.

Using information from Execucomp, we identify the beginning and end years of each
completed CEO episode. The variable TotTenure is defined as the total number of years in
which the CEO is running the firm. Within an episode, the variable Turnover is a dummy
variable which equals 1 in the last year of the CEO’s tenure and zero otherwise. We also use
Execucomp to construct the variable TotPay defined as the total compensation awarded to a
CEO in a given year.38 Table 1 reports the summary statistics of our sample. In particular,

36The ExecuComp database covers all firms included in the S&P 500, MidCap, and SmallCap indexes. It would
be interesting to extend the analysis to smaller public firms and private firms. Kaplan, Sensoy, and Stromberg
(2008) document high turnover in the management teams of VC-backed private companies before going public.

37This includes observations for years prior to 1992 for episodes that start before 1992 and end after 1992 when
we have information on the date at which the CEO was appointed.

38In common with many studies of CEO compensation (see, e.g., Murphy (1999, 2013)), we use total compen-
sation in the year awarded. Further details on variable definitions and on the construction of our dataset are
provided in Appendix G.
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the average and median CEO tenure lengths are 6.4 years and 5 years, respectively, while
the average annual turnover rate is 8.4%.

Our analysis centers on CEO turnover and the timing of CEO compensation in relation
to the quality of a firm’s growth prospects. Our empirical proxy for the growth prospects of
a firm during a given CEO episode is based on the mean ‘average Q’ of all firms in the same
industry. The use of average Q as a proxy for a firm’s growth opportunities is standard in
the empirical corporate finance literature.39 We consider the arithmetic mean of average Q
for all firms within the same 4-digit SIC industry group, denoted by IndQ. As a proxy for
the quality of growth prospects during a given episode, we use the value of IndQ in the year
before the CEO is appointed, which we denote by IndQInit. We interpret a higher value of
IndQInit as capturing better ex ante growth prospects at the time a new CEO is hired.

Managerial turnover in our setup is also affected by the current availability of growth
opportunities. Capturing the arrival of a growth opportunity in any given year during
a CEO episode is challenging empirically. As a proxy, we construct the variable RatioQ
defined as the ratio of IndQ in the firm’s industry in any given year to IndQInit. A higher
value of RatioQ will be observed if a larger proportion of firms within the industry have
received a growth opportunity, implying that the firm itself is more likely to be facing such
an opportunity.

To control for past performance within a CEO episode, we use the cumulative abnormal
return of the firm over the past two years, denoted by CAR. We also consider return on
assets in a given year (ROA) as an additional control for performance. Finally, we use the
logarithm of the firm’s total assets (LnAssets) to control for firm size.

[TABLE 1 HERE]

4.2 Determinants of CEO Turnover

We first examine the relation between turnover and the quality of growth prospects. As a
first pass, Figure 6 depicts the cumulative distribution of CEO tenure length conditional on
ex ante growth prospects proxied by IndQInit. The solid line plots the kernel estimate of
the distribution for the upper twenty percent of CEO episodes ranked by IndQInit, whereas
the dashed line corresponds to the bottom twenty percent. The cumulative distribution
for the upper IndQInit sub-sample lies significantly above the one for the bottom IndQInit
sub-sample.40 That is, the likelihood that a CEO will not ‘survive’ beyond any number of
years is higher for CEOs entering firms with good growth prospects than for CEOs entering
firms with poor growth prospects, consistent with our model. Figure 6 constitutes the
empirical counterpart to the simulation results depicted in Figure 3.

[FIGURE 6 HERE]

39The handbook by Eckbo et al (2001) surveys multiple studies in which average Q is used as a proxy for
growth opportunities. This practice stems from Hayashi (1982), who derives sufficient conditions such that a
firm’s average Q coincides with its marginal product of capital. See Caballero (1997) and Bond and Van Reenen
(2007) for surveys of the empirical literature assessing the links between average Q, marginal q, and investment.

40The two-sample Wilcoxon-Mann-Whitney test shows that the two distributions are significantly different from
each other, with a p-value of zero. Similarly, the Kolmogorov-Smirnov test rejects the hypothesis that the two
samples are drawn from the same distribution.
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We further assess the implications of our model for managerial turnover by running a
probit regression where the dependent variable is the Turnover indicator variable. The
probit specification is as follows:

Prob(Turnoverjt = 1) = Φ[ψ0 + ψ1IndQInitj + ψ2RatioQjt + ψ3CARjt +α
′
Xjt],

where Φ is the standard normal cumulative distribution function, j denotes a CEO episode,
t is calendar year, and X denotes a vector of control variables. In line with Jenter and
Lewellen (2014b), we control for the return on assets in year t and the size of the firm in
year t. Calendar year fixed effects are also included. Based on our analysis, we hypothesize
that the coefficients on IndQInit and RatioQ should be positive, while the coefficient on
CAR and ROA should be negative.

Table 2 summarizes the results of the probit regression. Column A reports the estimated
coefficients of the probit model and their standard errors. All explanatory variables have
the expected signs and are highly statistically significant. The coefficient on IndQInit is
positive, in line with our model’s prediction that turnover is more frequent in firms with
better ex ante growth prospects. The coefficient on RatioQ is also positive, in accord with
the idea that turnover is sometimes triggered by the arrival of growth opportunities. Finally,
the coefficients on CAR and on ROA are negative, in line with the theoretical prediction
that turnover is more likely after poor performance.41

Column B reports the implied marginal effects, which give the impact on the probability
of turnover of a unit increase in an explanatory variable, when all variables are evaluated
at the sample means. In Column C, the marginal effects are multiplied by the sample
standard deviation of the corresponding explanatory variables. A one standard deviation
increase in IndQInit is associated with an increase in the probability of turnover by 82 basis
points. Similarly, a one standard deviation increase in RatioQ leads to a 67 basis point
increase in the probability of turnover. Since the unconditional frequency of CEO turnover
in our sample is 8.4%, these results support the view that the growth-related drivers of
managerial turnover emphasized in this paper are economically significant. Of course, this
is in addition to the disciplinary role of turnover, which we also find to be important. In
our sample, a one standard error increase in past abnormal returns is associated with a
drop in the probability of turnover by 2.2 percentage points.

[TABLE 2 HERE]

An additional implication of our model is a tendency for firms with relatively poor ex
ante growth prospects to grant partial job protection to their CEOs. That is, our theory
predicts that in such firms, a CEO is less likely to be dismissed for the sake of growth when
an opportunity arises calling for his replacement. We explore the empirical validity of this
prediction by evaluating the marginal effect of RatioQ on the probability of CEO turnover
at different levels of IndQInit. According to the theory, the impact of RatioQ on turnover
should be greater for firms with relatively better ex ante growth prospects, i.e., for higher
values of IndQInit. Table 3 reports these differential marginal effects. The marginal effect
of RatioQ is strictly positive at all levels of IndQInit and is indeed increasing in IndQInit.

41The results in Table 2 are unaffected when one-year or three-year cumulative abnormal returns are used as a
measure of past performance, or when initial years of tenure are removed from the sample.
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[TABLE 3 HERE]

4.3 Growth Prospects and CEO Compensation

In this subsection, we provide evidence on the empirical relation between CEO compensa-
tion and firms’ growth prospects. A key insight from our model is that the managers of
firms with better and more frequent growth opportunities should have more front-loaded
compensation. We explore the data in two ways. First, we compute a measure of realized
compensation duration for each CEO episode and investigate how it varies in relation to the
growth prospects of the firm at the time the CEO was appointed. Second, we characterize
how CEO compensation profiles over tenure years differ across firms with different growth
prospects.

4.3.1 Compensation Duration

For a given CEO episode j lasting for Nj years, our measure of compensation duration,
labelled PayDuration, is defined as:

PayDurationj =

Nj
∑

n=1

DiscPayj,n
∑Nj

k=1DiscPayj,k
× n, (25)

where DiscPayj,n = TotPayj,n/(1+̺)
n corresponds to the present value of the compensation

received by the CEO in his n-th tenure year. Setting the discount rate ̺ at 10%, we find
that, in the sub-sample of episodes over which this measure is computed, average CEO
compensation duration is 3.4 years, while the median is 2.9 years.42

The empirical measure of pay duration defined by (25) is analogous to the one introduced
in Section 3.2 to illustrate the implications of our model for managerial compensation. As
an empirical counterpart to Figure 4, Figure 7 depicts kernel estimates of the cumulative
distribution of PayDuration conditional on ex ante growth prospects proxied by IndQInit.
The solid line pertains to the upper twenty percent of IndQInit in our sample, while the
dashed line pertains to the bottom twenty percent. The cumulative distribution for the
upper IndQInit sub-sample lies everywhere above the one for the bottom IndQInit sub-
sample, which is consistent with our model’s insight that firms with better growth prospects
should have more front-loaded compensation.43

[FIGURE 7 HERE]

Table 4 reports the results from regressing PayDuration on IndQInit across CEO episodes,
controlling for a combination of year and industry fixed effects.44 The estimated coefficient
on IndQInit is negative and highly significant across all specifications, confirming the neg-
ative relation between CEO compensation duration and firms’ growth prospects.

42The measure of compensation duration is not very sensitive to the value of the discount rate. The conclusions
from this subsection are robust to alternative values of ̺.

43Again, the results from the two-sample Wilcoxon-Mann-Whitney test and from the Kolmogorov-Smirnov test
both confirm that the difference between the two empirical distributions is statistically significant.

44In order to retain statistical power, we use one-digit SIC codes to control for industry fixed effects. Using a
finer industry classification does not change the sign of the point estimate.
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[TABLE 4 HERE]

4.3.2 Compensation Profile over Tenure

To further investigate how profiles of CEO pay over tenure vary across firms with different
growth prospects, we estimate the regression equation

Ln(TotPayjt) = ψ0+ψ1 TenureY earjt + ψ2 IndQInitj+

+ ψ3 IndQInitj × TenureY earjt +α
′Xjt + ǫjt,

where j denotes a CEO episode, t is a calendar year, TenureY earjt (resp. TotPayjt) denotes
the number of years in tenure of CEO j in year t (resp. the total compensation received
by the CEO in that year), and X is a vector of control variables. We control for past
performance and firm size, as well as for calendar year fixed effects and industry or firm
fixed effects. To estimate this regression, we use observations for all years in a CEO episode
in which compensation data is available, resulting in many more observations than in the
duration regressions reported in Table 4.

Our model suggests that firms with better ex ante growth prospects are characterized by
a higher initial level of pay per period (i.e., ψ2 positive), and slower growth in compensation
over tenure years (i.e., ψ3 negative). Table 5 summarizes our empirical findings for two
alternative specifications, controlling for industry and firm fixed effects, respectively. The
coefficients of interest are significant with the expected signs, and the results are very similar
across both specifications. We also note that the coefficient on past abnormal returns is
positive and significant, in line with the theoretical prediction that CEO pay is positively
related to past performance.

[TABLE 5 HERE]

5 Conclusion

This paper introduces growth-induced turnover in a dynamic moral hazard framework and
analyzes the interaction between this type of turnover and managerial incentive provision.
In our model, growth opportunities arrive stochastically over time and the firm must ap-
point a new management to be able to seize them. Our analysis highlights the tradeoff
that a firm faces between the benefit of always having at the helm a manager who is the
right man for the job at hand and the cost of incentive provision. The key new insight
is that exposing incumbent managers to the risk of growth-induced dismissal effectively
increases their discount rate, thus increasing the cost of incentive provision. As a result,
some firms find it optimal to provide some degree of job protection to their managers, at
the cost of foregoing growth opportunities. Across firms or industries, a higher likelihood
of growth-induced turnover translates into a greater tendency to front-load compensation.
Our empirical findings are consistent with these predictions of the model.

An essential feature of our model is that non-disciplinary managerial turnover can be
triggered by the firm contingent on the arrival of exogenous contractible shocks. In our
setup, shocks correspond to the arrival of growth opportunities, and it is first-best efficient
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for the firm to replace the incumbent manager upon arrival of an opportunity. Our analysis
could be applied to alternative forms of exogenous contractible shocks. First, transformative
managerial change may also be important for firms in decline. For instance, a change of
management may be required for a firm to respond to increased product market competition
or to the threat of a disruptive new technology. Second, the firm may face opportunities to
transform—through a change of management—that would bring gains that are too modest
to outweigh the cost of implementing them, so that they would not be taken up under first
best. Yet, in a second-best world, it may be optimal to take these inefficient opportunities
when the agency costs associated with the current manager are high. We believe that a
number of theoretical insights of the paper would carry through in these alternative settings,
although the empirical implications would be quite different.

The existing empirical literature on managerial turnover and compensation has been
mostly informed by two paradigms from the contracting literature—the moral hazard model
in which pay and dismissal are used to incentivize the agent, and the learning model in which
the principal learns over time about the unknown quality of the agent. In our view, trans-
formative change can be another powerful driver of managerial turnover and compensation.
We document the fact that industries with better growth prospects experience higher CEO
turnover and rely on more front-loaded compensation schemes. These findings are consis-
tent with the assumption of growth-induced turnover and the predictions of our model.
Nonetheless, other theories may be consistent with these findings. Identifying the specific
channel through which firms’ growth prospects relate to CEO turnover and compensation
deserves further empirical work.
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Figure 1: Value Function, High-Growth Firm
Notes : The figure depicts the firm’s value function and the optimal compensation threshold wc for parameter
values r = 7%, ̺ = 16%, µ = 10, σ = 12, q = 0.2, γ = 0.25, λ = 0.5, κ = 2, w̄ = 8. The firm’s value function and
the compensation threshold are determined by solving the free-boundary problem defined in Section 2.3. The
growth-optimality condition (16) holds for all values of the manager’s promise.
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Figure 2: Value Function, Low-Growth Firm
Notes : The figure depicts the firm’s value function (solid blue line), along with the optimal growth and compen-
sation thresholds (wg, wc), for parameter values r = 7%, ̺ = 16%, µ = 10, σ = 12, q = 0.1, γ = 0.1, λ = 1, κ = 4,
w̄ = 8. The firm’s value function and the thresholds are determined by solving the free-boundary problem defined
in Section 2.4. The growth-optimality condition (16) holds on [0, wg] but is violated for w > wg. The figure also
represents (dashed orange line) what firm value would be if the firm were constrained to take all growth oppor-
tunities, with the compensation threshold optimally determined by the solution to the free-boundary problem
defined in Section 2.3.
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Figure 3: Distribution of Tenure Length: High-Growth vs. Low-Growth
Notes : The figure depicts model-implied cumulative distribution functions obtained from simulations for param-
eter values r = 7%, ̺ = 16%, µ = 1, σ = 1, q = 0.2, γ = 0.25 (high-growth) or γ = 0.10 (low-growth), λ = 0.4,
κ = 0.3, w̄ = 1. Optimal contractual thresholds are wc = 1.24 in the high-growth case, and wg = 0.92 and
wc = 1.36 in the low-growth case.
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Figure 4: Distribution of Realized Compensation Duration: High-Growth vs. Low-Growth
Notes : The figure depicts model-implied cumulative distribution functions obtained from simulations for param-
eter values r = 7%, ̺ = 16%, µ = 1, σ = 1, q = 0.2, γ = 0.25 (high-growth) or γ = 0.10 (low-growth), λ = 0.4,
κ = 0.3, w̄ = 1. Optimal contractual thresholds are wc = 1.24 in the high-growth case, and wg = 0.92 and
wc = 1.36 in the low-growth case.
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Figure 5: Compensation Profile over Tenure: High-Growth vs. Low-Growth
Notes : The figure depicts model-implied expected compensation, expressed in logs, as a function of time since
hiring, conditional on being retained. Simulations are run for parameter values r = 7%, ̺ = 16%, µ = 1,
σ = 1, q = 0.2, γ = 0.25 (high-growth) or γ = 0.10 (low-growth), λ = 0.4, κ = 0.3, w̄ = 1. The size of the firm,
identical in the two cases, is normalized so that the profile starts at 1 in the low-growth case. Optimal contractual
thresholds are wc = 1.24 in the high-growth case, and wg = 0.92 and wc = 1.36 in the low-growth case. A period
corresponds to a quarter.
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Figure 6: Distribution of CEO Tenure Length Conditional on Initial Growth Prospects
Notes : The figure depicts kernel estimates of the empirical cumulative distribution of CEO tenure length (Tot-
Tenure) for two sub-samples. The first sub-sample (‘Low IndQInit’) consists of the bottom quintile of CEO
episodes sorted by initial industry Q; the corresponding distribution is plotted as a dashed line. The second
sub-sample (‘High IndQInit’) consists of the top quintile of episodes sorted by initial industry Q; the correspond-
ing distribution is plotted as a solid line. Details on variable definitions are provided in the main text and in
Appendix G.

37



0
.2

.4
.6

.8
1

C
D

F
 o

f P
ay

D
ur

at
io

n

0 2 4 6 8 10
CEO Compensation Duration

Low IndQInit High IndQInit

Figure 7: Distribution of CEO Pay Duration Conditional on Initial Growth Prospects
Notes : The figure depicts kernel estimates of the empirical cumulative distribution of realized compensation
duration (PayDuration) for the bottom and top quintiles of CEO episodes sorted by initial industry Q (IndQInit),
denoted by ‘Low IndQInit’ and ‘High IndQInit’, respectively. Details on variable definitions are provided in the
main text and in Appendix G.
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Table 1: Summary Statistics

Variable Mean Sd p25 p50 p75 N

TotTenure 6.404 4.935 3.000 5.000 9.000 2,398
Turnover 0.084 0.277 0.000 0.000 0.000 26,957
LnTotPay 7.856 1.037 7.128 7.851 8.581 30,599
IndQInit 1.763 0.815 1.153 1.523 2.119 30,599
RatioQ 1.047 0.317 0.868 1.013 1.171 30,599
CAR 0.002 0.240 -0.141 -0.003 0.131 30,599
ROA 0.039 0.076 0.013 0.040 0.075 30,599

LnAssets 7.670 1.703 6.424 7.583 8.859 30,559

Notes : The table reports summary sample statistics for the merged ExecuComp/Compustat/CRSP data set,
which covers CEO episodes reported in ExecuComp over the period 1992-2013. TotTenure is the total number of
tenure years for CEO episodes that have finished within the sample period. Turnover is a dummy variable which
equals 1 if the CEO is replaced in the following year and zero otherwise. LnTotPay is the logarithm of total CEO
compensation awarded in a given calendar year. IndQInit is the arithmetic mean of the average Q of all firms
in the same 4-digit SIC industry group in the year before the CEO was appointed; the same value is repeated
throughout each CEO episode. RatioQ is the ratio of the mean industry average Q in a given year divided by
IndQInit. CAR is the two-year cumulative abnormal return of the firm (annualized). ROA is return on assets.
LnAssets is the logarithm of the book value of total assets. Further details on variable definitions are provided
in the main text and in Appendix G.
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Table 2: Determinants of CEO Turnover
(A) (B) (C)

Coefficients Marginal Effects Coefficients of Variation
b/se b/se (in percentage points)

IndQInit 0.070*** 0.010*** 0.815
(0.015) (0.002)

RatioQ 0.145*** 0.021*** 0.667
(0.042) (0.006)

CAR -0.653*** -0.093*** -2.232
(0.054) (0.008)

ROA -1.003*** -0.143*** -1.087
(0.139) (0.020)

LnAssets 0.038*** 0.005*** 0.852
(0.007) (0.001)

N 26,957 26,957 26,957

Notes : The table summarizes the evidence on the probability of CEO turnover from the probit regression estimated
over the merged ExecuComp/Compustat/CRSP data set from 1992 to 2013. The dependent variable is the
Turnover indicator variable. IndQInit is the arithmetic mean of the average Q of all firms in the same 4-digit
SIC industry group in the year before the CEO was appointed; the same value is repeated throughout each CEO
episode. RatioQ is the ratio of the mean industry average Q in a given year divided by IndQInit. CAR is the
two-year cumulative abnormal return of the firm (annualized). ROA is return on assets. LnAssets is the logarithm
of the book value of total assets. Calendar year fixed effects are included in the regression.
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Table 3: Initial Growth Prospects and Growth-Induced Turnover

Marginal Effect of RatioQ
b/se

Low IndQInit 0.019***
(0.005)

Median IndQInit 0.020***
(0.006)

High IndQInit 0.022***
(0.006)

N 26,957

Notes : The table reports the marginal effect of RatioQ on the likelihood of turnover for different levels of initial
industry Q, as implied by the probit model estimated over the merged ExecuComp/Compustat/CRSP data set
from 1992 to 2013. IndQInit is the arithmetic mean of the average Q of all firms in the same 4-digit SIC industry
group in the year before the CEO was appointed; the same value is repeated throughout each CEO episode.
RatioQ is the ratio of the mean industry average Q in a given year divided by IndQInit. The marginal effect of
RatioQ is evaluated at different quantiles of the distribution of IndQInit. ‘Low’, ‘Median’, and ‘High’ quantiles
correspond to the 20-th, 50-th, and 80-th percentiles of the distribution of IndQInit, respectively.
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Table 4: Determinants of Compensation Duration

(A) (B) (C) (D)
b/se b/se b/se b/se

IndQInit -0.331*** -0.295*** -0.153** -0.140**
(0.057) (0.057) (0.064) (0.065)

Year Fixed Effects No Yes No Yes
Industry Fixed Effects No No Yes Yes
R-squared 0.014 0.165 0.058 0.191
N 2,038 2,038 2,038 2,038

Notes : This table summarizes the evidence on CEO compensation duration. The regression is estimated over
CEO episodes reported in ExecuComp over the period 1992-2013. The dependent variable is the measure of pay
duration defined in Section 4.3. IndQInit is the arithmetic mean of the average Q of all firms in the same 4-digit
SIC industry group in the year before the CEO was appointed. Industry fixed effects are based on 1-digit SIC
codes.
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Table 5: Determinants of CEO Compensation

(A) (B)
LnTotPay LnTotPay

TenureYear 0.019*** 0.009**
(0.003) (0.003)

IndQInit 0.114*** 0.106***
(0.016) (0.017)

IndQInit × TenureYear -0.012*** -0.009***
(0.002) (0.002)

CAR 0.556*** 0.441***
(0.022) (0.017)

LnAssets 0.421*** 0.226***
(0.004) (0.010)

Firm Fixed Effects No Yes
Industry Fixed Effects Yes No
Year Fixed Effects Yes Yes
R-squared 0.523 0.665
N 28,925 28,925

Notes : This table summarizes the evidence on the profile of CEO compensation over tenure. LnTotPay is the
logarithm of total CEO pay awarded in a given year as reported in ExecuComp. TenureYear is the number of
years in tenure of the CEO in a given calendar year. IndQInit is the arithmetic mean of the average Q of all
firms in the same 4-digit SIC industry group in the year before the CEO was appointed. CAR is the two-year
cumulative abnormal return of the firm (annualized). ROA is return on assets. LnAssets is the logarithm of the
book value of total assets. The regression is estimated over all episode-year observations in our sample, some of
which pertain to CEO episodes that have not finished by the end of the sample period.
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A The Setting

In this appendix, we provide a complete description of the environment that we consider
in this paper, in which an infinitely-lived firm is run by a sequence of managers who can
divert cashflows for their own benefit. We build the model that we study on a complete
probability space (Ω,F ,P) supporting a sequence of independent standard one-dimensional
Brownian motions Z1, Z2, . . . , Zn, . . . as well as an independent sequence of independent
and identically distributed random variables U1, U2, . . . , Un, . . ., each having the uniform
distribution on [0, 1]. We denote by (FZn

t ) the natural filtration of Zn. We assume that
these filtrations as well as any other one we consider in this and the following appendices
have been regularised to satisfy the “usual conditions”, namely, to be right-continuous and
augmented by the P-negligible sets in F .

A.1 The nnn-th Manager’s Contract

In this section, we describe the contract of the n-th manager. To simplify the notation,
we let t = 0 refer to the time at which the n-th manager takes office. We model the n-th
manager’s size-adjusted cumulative stealing strategy by an increasing continuous (FZn

t )-
adapted process An such that An0 = 0. We denote by An the family of all such processes.
Given a stealing strategy An ∈ An, we denote by (F̂n

t ) =
(

F̂n
t (A)

)

the information flow
generated by the size-adjusted reported cashflows during the tenure of the n-th manager,
which is the natural filtration of the process Ŷ n defined by

Ŷ n
t = µt−Ant + σZnt .

It is worth noting that F̂n
t ⊆ FZn

t for all t ≥ 0, with equality holding if An = 0.
We assume that the firm’s growth policy is based on the history of reported cashflows

during the tenure of each manager. Accordingly, we model the firm’s growth policy during
the tenure of the n-th manager by a càdlàg (F̂n

t )-progressively measurable process process
Gn with values in the interval [0, 1]. We define the time τng that elapses between the
appointment of the n-th manager and his growth-induced dismissal (if he is not fired for
disciplinary reasons before) by

τng = inf

{

t ≥ 0
∣

∣

∣ exp

(

−q

∫ t

0
Gns ds

)

≤ Un
}

, (A.1)

with the usual convention that inf ∅ = ∞. In view of the independence of (F̂n
t ) and U

n, we
can see that

P

(

τng > t
∣

∣ F̂n
t

)

= P

(

Un < exp

(

−q

∫ t

0
Gns ds

)

∣

∣

∣
F̂n
t

)

= exp

(

−q

∫ t

0
Gns ds

)

.

We assume that disciplinary dismissal is also based on the history of each manager’s re-
ported cashflows. Accordingly, the time τnd that elapses between the appointment of the
n-th manager and his disciplinary firing (if he is not replaced for the sake of taking a
growth opportunity before) is an (F̂n

t )-stopping time. Furthermore, we assume that the
manager’s compensation is also determined based on the history of reported cashflows. Ac-
cordingly, the manager’s size-adjusted cumulative compensation is given by an increasing
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càdlàg (F̂n
t )-adapted process Cn such that C0− = 0, while the manager’s size-adjusted

severance upon growth-induced dismissal is Snτng , where S
n is a positive (F̂n

t )-progressively
measurable process.

Remark A-1. If the firm stands ready to take all growth opportunities, setting Gn ≡ 1 for
all n, then the times τng are independent and exponentially distributed with parameter q.
Indeed, the choice Gn ≡ 1 gives rise to the identities

P

(

τng > t
∣

∣ F̂n
t

)

= e−qt = P(τng > t).

In other words, the random times between the arrival of two consecutive growth opportuni-
ties are independent random variables that are exponentially distributed with parameter q.

For technical reasons, we assume that the family An is restricted to include only pro-
cesses satisfying the integrability condition

E

[

∫

[0,∞[
e−̺t dAnt

]

<∞. (A.2)

Given any such stealing strategy An ∈ An, we use the following notation:

Pn
C(A

n) is the family of all increasing càdlàg (F̂n
t )-adapted processes Cn

such that Cn0− = 0;

Pn
S (A

n) is the family of all positive càdlàg (F̂n
t )-adapted processes Sn;

Pn
G(A

n) is the family of all (F̂n
t )-progressively measurable processes Gn

with values in [0, 1];

Pn
τd
(An) is the set of all (F̂n

t )-stopping times.

These families depend on the choice of An ∈ An through the dependence on An of the
natural filtration (F̂n

t ) of the reported cashflows process Ŷ n. In particular, it is worth
noting that

Pn
C(A

n) ⊆ Pn
C(0), Pn

S (A
n) ⊆ Pn

S (0),

Pn
G(A

n) ⊆ Pn
G(0) and Pn

τd
(An) ⊆ Pn

τd
(0) for all An ∈ An (A.3)

because F̂n
t ⊆ FZn

t for all t ≥ 0, with equality if An = 0. Furthermore, we assume that
the families Pn

C(A
n) and Pn

S (A
n) are restricted to include only processes satisfying the

integrability condition

E

[

∫

[0,∞[
e−̺t dCnt + sup

t≥0

(

e−̺tSnt
)

]

<∞. (A.4)
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We can now introduce the formal definition of the n-th manager’s contract.

Definition A-1. A long-term incentive contract , or just incentive contract , for the n-th
manager is a function

Γn = (ΓnC ,Γ
n
S ,Γ

n
G,Γ

n
τd
) : An → Pn

C(0)× Pn
S (0) × Pn

G(0)× Pn
τd
(0)

such that

ΓnC(A
n) ∈ Pn

C(A
n), ΓnS(A

n) ∈ Pn
S (A

n),

ΓnG(A
n) ∈ Pn

G(A
n) and Γτd(A

n) ∈ Pn
τd
(An) for all An ∈ An.

We denote by Gn the family of all such contracts.

Remark A-2. It would be natural to include additional requirements as part of the defi-
nition of a long-term incentive contract. For instance, for any two stealing strategies that
coincide up to a certain stopping time, the evaluation of a contract at these two strategies
should result in the same compensation and termination outcomes up to that stopping time.
We have opted for not spelling out explicitly such constraints in Definition A-1 because they
do not affect the remainder of our analysis.

A.2 The Managers’ and the Firm’s Payoffs

We define

τ1h = 0, τn+1
h =

n
∑

j=1

τ jd ∧ τ jg , Φ1 = 1 and Φn+1 = (1 + γ)
1
{τ1g≤τ1

d
}
+···+1{τng ≤τn

d
}
, (A.5)

for n ≥ 1, and we note that τnh is the time at which the n-th manager is hired, while Φn is
the size of the firm during the n-th manager’s tenure. Accordingly, ΦnAn, ΦnCn and ΦnSn

model the n-th manager’s actual stealing strategy, cumulative compensation and severance
upon dismissal, respectively. We also consider the σ-algebras

I1 = {∅,Ω} and In+1 = σ

(

Ŷ j

t∧τ j
d
∧τ jg

, τ jd, τ
j
g , j = 1, . . . , n, t ≥ 0

)

, (A.6)

for n ≥ 1, and we note that In is the information that is available to the firm at the hiring
time τnh of the n-th manager. In view of the independence of (Z1, U1), . . . , (Zn, Un), . . .
and the structure of each manager’s contract that we considered in the previous section,
we can see that

τnd , τ
n
g , Φ

n+1 are In+1-measurable, (A.7)

while

Aj , Sj, Cj, τ jd, τ
j
g ,

Φj+1

Φn
, for j ≥ n, are independent of In. (A.8)
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Given an incentive contract Γn ∈ Gn (see Definition A-1), the n-th manager’s total
expected discounted payoff as of the time τnh of his hiring is given by

M̃n(Γn, An | In) = E

[∫

[0,τn
d
∧τng [

e−̺tΦn dCnt + e−̺τ
n
d Φn∆Cnτn

d
1{τn

d
<τng }

+ e−̺τ
n
g ΦnSnτng 1{τng ≤τn

d
}∩{τng <∞} + λ

∫ τn
d
∧τng

0
e−̺tΦn dAnt

∣

∣

∣
In
]

.

Here,

we write Cn, Sn and τnd in place of ΓnC(A
n), ΓnS(A

n) and Γnτd(A
n),

respectively, and we note that

τng is defined as in (A.1) for Gn = ΓnG(A
n).

In view of (A.7)–(A.8), we can see that this expression is equivalent to

M̃n(Γn, An | In) = Φn E

[∫

[0,τn
d
∧τng [

e−̺t dCnt + e−̺τ
n
d ∆Cnτn

d
1{τn

d
<τng }

+ e−̺τ
n
g Snτng 1{τng ≤τn

d
}∩{τng <∞} + λ

∫ τn
d
∧τng

0
e−̺t dAnt

]

=: ΦnM(Γn, An), (A.9)

where M(Γn, An) is the n-th manager’s size-adjusted total expected discounted payoff as
of time τnh .

From this point onward, we restrict our attention to admissible contracts. These con-
tracts are such that they make no stealing optimal for the manager, i.e., no stealing is
“incentive compatible”. Additionally, these contracts are such that the manager’s size-
adjusted expected discounted compensation under no stealing is equal to w̄.

Definition A-2. An admissible long-term incentive contract , or just admissible contract ,
for the n-th manager is any incentive contract Γn ∈ Gn (see Definition A-1) satisfying the
admissibility constraints

M(Γn, 0) = sup
An∈An

M(Γn, An) and M(Γn, 0) = w̄. (A.10)

We denote by Gna ⊆ Gn the family of all such contracts.

We henceforth assume that the firm offers admissible contracts to all managers, who all
refrain from stealing, namely, An = 0 for all n ≥ 1. The expected discounted profit as of
time τnh that the firm receives during the tenure of the n-th manager is

Π̃n(Γn | In) = Φn E

[ ∫ τn
d
∧τng

0
e−rtµdt−

∫

[0,τn
d
∧τng [

e−rt dCnt

− e−rτ
n
d ∆Cnτn

d
1{τn

d
<τng } − e−rτ

n
g Snτng 1{τng ≤τn

d
}∩{τng <∞}

]

=: ΦnΠ(Γn), (A.11)
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where Π(Γn) is the size-adjusted expected discounted profit as of time τnh that the firm
receives during the tenure of the n-th manager. Here, as well as in what follows,

we write Cn, Sn and τnd in place of ΓnC(0), ΓnS(0) and Γnτd(0),

respectively, and we note that

τng is defined as in (A.1) for Gn = ΓnG(0).

In view of (A.7)–(A.8), we can see that the expected discounted profit of the firm at the
start of the n-th manager’s tenure is

F̃n
(

(Γj)j≥n | In
)

= E



ΦnΠ
(

Γn) +

∞
∑

j=n+1

e−r(τ
j

h
−τn

h
)
(

ΦjΠ(Γj)− Φj−1κ
)

∣

∣

∣

∣

In





= Φn



Π(Γn) + E





∞
∑

j=n+1

e−r(τ
j

h
−τn

h
)

(

Φj

Φn
Π(Γj)−

Φj−1

Φn
κ

)









=: ΦnFn
(

(Γj)j≥n
)

,

where Fn
(

(Γj)j≥n
)

is the size-adjusted expected discounted profit of the firm at the start
of the n-th manager’s tenure. Note that this expression incorporates the turnover costs
associated with the n-th manager and his successors. In view of the identities

τ jh − τnh = τnd ∧ τng + · · ·+ τ j−1
d ∧ τ j−1

g

= τnd ∧ τng + τ jh − τn+1
h for all j ≥ n+ 1,

which follow from (A.5), we can see that

E

[

∞
∑

j=n+1

e−r(τ
j

h
−τn

h
)

(

Φj

Φn
Π(Γj)−

Φj−1

Φn
κ

)

]

= E

[

e−r(τ
n
d
∧τng )

{

Φn+1

Φn
Π(Γn+1) +

∞
∑

j=n+2

e−r(τ
j

h
−τn+1

h
)

(

Φj

Φn
Π(Γj)−

Φj−1

Φn
κ

)

− κ

}]

= E

[

e−r(τ
n
d
∧τng ) 1

Φn

{

E

[

Φn+1Π(Γn+1)

+
∞
∑

j=n+2

e−r(τ
j

h
−τn+1

h
)
(

ΦjΠ(Γj)− Φj−1κ
) ∣

∣

∣
In+1

]

− Φnκ

}]

= E

[

e−r(τ
n
d
∧τng )Φ

n+1

Φn
Fn+1

(

(Γj)j≥n+1

)

− e−r(τ
n
d
∧τng )κ

]

.

We thus obtain the recursive expression

Fn
(

(Γj)j≥n
)

= Π(Γn) + E

[

e−r(τ
n
d
∧τng )Φ

n+1

Φn
Fn+1

(

(Γj)j≥n+1

)

− e−r(τ
n
d
∧τng )κ

]

.
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Combining this result with the calculation

E

[

e−r(τ
n
d
∧τng )Φ

n+1

Φn

]

= E

[

e−r(τ
n
d
∧τng )(1 + γ)

1{τng ≤τn
d
}

]

= E

[

e−rτ
n
d 1{τn

d
<τng } + (1 + γ)e−rτ

n
g 1{τng ≤τn

d
}

]

and (A.11), we can see that the size-adjusted expected discounted profit of the firm at the
hiring time τnh of the n-th manager satisfies the recursive equation

Fn
(

(Γj)j≥n
)

= E

[∫ τn
d
∧τng

0
e−rtµdt−

∫

[0,τn
d
∧τng [

e−rt dCnt

+ e−rτ
n
d

[

Fn+1
(

(Γj)j≥n+1

)

−∆Cnτn
d
− κ
]

1{τn
d
<τng }

+ e−rτ
n
g

[

(1 + γ)Fn+1
(

(Γj)j≥n+1

)

− Snτng − κ
]

1{τng ≤τn
d
}∩{τng <∞}

]

. (A.12)

A.3 The Firm’s Problem: Take One

The uncertainty under the n-th manager’s tenure is driven by (Zn, Un), which is an inde-
pendent copy of (Z1, U1). In particular, (An) is a sequence of independent copies of A1.
As a result, if a contract is admissible (in the sense of Definition A-2) for the first manager,
then the same contract is admissible for all managers. In view of this observation and a
simple induction argument along the lines that lead to the recursive equation (A.12), we
can see that it is optimal for the firm seeking to implement no stealing to give the same
admissible contract to all managers.

If all successive managers are offered the same contract Γ ∈ Ga, then the firm’s size-
adjusted expected discounted profit at the start of any manager’s tenure is

F 1
(

(Γ, . . . ,Γ, . . .)
)

= Fn
(

(Γ, . . . ,Γ, . . .)
)

=: F (Γ) for all n ≥ 1.

In particular, (A.12) implies that

F (Γ) = E

[ ∫ τd∧τg

0
e−rtµdt−

∫

[0,τd∧τg[
e−rt dCt + e−rτd

[

F (Γ)−∆Cτd − κ
]

1{τd<τg}

+ e−rτg
[

(1 + γ)F (Γ)− Sτg − κ
]

1{τg≤τd}∩{τg<∞}

]

, (A.13)

where C, S, and τd stand for ΓC(0), ΓS(0) and Γτd(0), respectively, and τg is defined as in
(A.1) for G = ΓG(0).

We conclude with the statement of the contracting problem that the firm faces.

Problem A-1. Determine an admissible contract Γ⋆ ∈ Ga (see Definition A-2) such that

F (Γ⋆) = sup
Γ∈Ga

F (Γ).
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B Admissible Dynamic Contracts

In light of the analysis in Appendix A, we now focus on the first manager’s contract. To
simplify the notation, we write Z, (FZ

t ), A, (F̂t) =
(

F̂t(A)
)

, etc, instead of Z1, (FZ1

t ), An,

(F̂n
t ) =

(

F̂n
t (A)

)

, etc, in what follows. In particular, given a stealing strategy A ∈ A,

PC(A) is the family of all increasing càdlàg (F̂t)-adapted process C

such that C0− = 0; (B.1)

PS(A) is the family of all positive càdlàg (F̂t)-adapted processes S; (B.2)

PG(A) is the family of all (F̂t)-progressively measurable processes G

with values in [0, 1]; (B.3)

Pτd(A) is the set of all (F̂t)-stopping times (B.4)

(recall that the families PC(A) and PS(A) are restricted to include only processes satisfying

the integrability condition (A.4)). We will also need the filtration (F
Z,τg
t ) that is larger than

(FZ
t ) and incorporates the information on the occurrence of growth-induced termination,

which is defined by

F
Z,τg
t = FZ

t ∨ σ
(

{τg ≤ s} , s ≤ t
)

(see also the discussion on filtrations at the very beginning of Appendix A). Notice that if
the manager refrains from stealing (A = 0), then F̂t = FZ

t for all t ≥ 0, in which case the

sigma-algebra Ft introduced in Section 1.2 coincides with F
Z,τg
t .

B.1 Proof of Lemma 1

Lemma 1 is a direct consequence of the following result (see Remark B-1 below).

Lemma B-1. Consider any processes C ∈ PC(0), S ∈ PS(0), G ∈ PG(0) together with any
stopping time τd ∈ Pτd(0), and let τg be the random time that is defined as in (A.1). Also,
consider the processes M , M̃ defined by

Mt = 1{t<τd∧τg} E

[
∫

]t,τd∧τg[
e−̺(s−t) dCs

+ e−̺(τd−t)∆Cτd1{τd<τg} + e−̺(τg−t)Sτg1{τg≤τd}∩{τg<∞}

∣

∣

∣
F
Z,τg
t

]

,

M̃t = 1{t<τd}d
−1
t E

[

∫

]t,τd]∩R+

ds dCs + q

∫ τd

t

dsGsSs ds
∣

∣

∣ FZ
t

]

,

where

dt = exp

(

−̺t−

∫ t

0
qGs ds

)

, (B.5)
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and let T 0
M̃

be the first hitting time of 0 by M̃ , namely,

T 0
M̃

= inf{t ≥ 0 | M̃t = 0}.

The following statements hold true:

(I) Mt = 1{t<τg}M̃t for all t ≥ 0.

(II) There exists an (FZ
t )-progressively measurable process β such that

∫ T

0 d
2
tβ

2
t dt < ∞ for

all T > 0, and

dMt =
[

̺Mt + qGt(Mt − St)
]

dt− dCt + σβt dZt (B.6)

on the event {t < τd ∧ τg}.

(III) T 0
M̃

≤ τd, and the processes (C −CT 0

M̃

)1]T 0

M̃
,τd]

, GS1]T 0

M̃
,τd]

and β1]T 0

M̃
,τd]

are indistin-

guishable from 0.

Proof. Claim (I) follows from standard credit risk theory (e.g., see Bielecki and Rutkowski
(2002), Section 5.1.1). To establish the rest of the claims, we first observe that

E

[∫

[0,τd]∩R+

ds dCs + q

∫ τd

0
dsGsSs ds

∣

∣

∣
FZ
t

]

=

∫

[0,t∧τd]
ds dCs + q

∫ t∧τd

0
dsGsSs ds

+ 1{t<τd}E

[

∫

]t,τd]∩R+

ds dCs + q

∫ τd

t

dsGsSs ds
∣

∣

∣ FZ
t

]

=

∫

[0,t∧τd]
ds dCs + q

∫ t∧τd

0
dsGsSs ds+ dtM̃t.

In view of the martingale representation theorem, there exists an (FZ
t )-progressively mea-

surable process β such that
∫ T

0 d
2
sβ

2
s ds <∞ for all T > 0, and

E

[

∫

[0,τd]∩R+

ds dCs + q

∫ τd

0
dsGsSs ds

∣

∣

∣
FZ
t

]

= M̃0− +

∫ t

0
dsβs dZs,

where

M̃0− = E

[

∫

[0,τd]∩R+

ds dCs + q

∫ τd

0
dsGsSs ds

]

= ∆C0 + M̃0.

Rearranging terms, we obtain

dtM̃t = M̃0− −

∫

[0,t∧τd]
ds dCs − q

∫ t∧τd

0
dsGsSs ds +

∫ t

0
dsβs dZs. (B.7)

Using the definition of d in (B.5), (B.7), and the integration by parts formula, we can
see that M̃ satisfies

dM̃t =
[

̺M̃t + qGt(M̃t − St)
]

dt− dCt + σβt dZt
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on the event {t < τd}, which, combined with part (I) of the lemma, implies the claim in (II).
Furthermore, the definitions of M̃ and T 0

M̃
, along with (B.7), imply all the properties listed

in (III).

Remark B-1. It is straightforward to see that Lemma 1 follows immediately from Lemma B-
1. Indeed, consider a long-term incentive contract Γ ∈ G and suppose the manager refrains
from stealing, so that F

Z,τg
t represents all the information accumulated by the firm up to

time t. Also, let C = ΓC(0), S = ΓS(0) and τd = Γτd(0), and let τg be the random time
that is defined as in (A.1) for G = ΓG(0). In view of Definition A-1, C ∈ PC(0), S ∈ PS(0),
G ∈ PG(0) and τd ∈ Pτd(0). Therefore, the results of Lemma B-1 apply, and Lemma 1
follows from Claim (II).

B.2 Dynamic Contracts

Under no stealing, the dynamics given by (B.6) identify with

dMt =
[

̺Mt + qGt(Mt − St)
]

dt− dCt + βt (dŶt − µdt)

because, in this case, σ dZt = dŶt − µdt. This observation motivates us to restrict our
attention to “dynamic” contracts that track the state processW whose stochastic dynamics
are modelled by

dWt =
[

̺Wt + qGt(Wt − St)
]

dt− dCt + βt (dŶt − µdt)

=
[

̺Wt + qGt(Wt − St)
]

dt− dCt − βt dAt + σβt dZt, (B.8)

the second equality following from the fact that, in general, dŶt − µdt = −dAt + σdZt.
In view of these considerations, we adopt the following definition of dynamic contracts,

where, in line with (B.1)–(B.4),

Pβ(A) is the family of all positive (F̂t)-progressively measurable processes β

such that E

[
∫ ∞

0
e−2rtβ2t dt

]

<∞, (B.9)

where r < ̺ is the firm’s discount rate. Note that, for the purposes of our analysis below,
we impose technical conditions on the process β that are stronger than the ones appearing
in Lemma B-1.(II).

Definition B-1. A dynamic contract is a function

D = (DC ,DS ,DG,Dτd ,Dβ) : A → PC(0)× PS(0)× PG(0)× Pτd(0) × Pβ(0)

together with a constant winit > 0 such that

(I) (DC ,DS ,DG,Dτd) is a contract in the sense of Definition A-1;

(II) Dβ(A) ∈ Pβ(A) for all A ∈ A;

(III) given any A ∈ A, the solution W to the SDE (B.8) for

C = DC(A), S = DS(A), G = DG(A), β = Dβ(A) and W0− = winit,
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is such that

(a) ∆Ct ≤Wt− for all t ≤ τd := Dτd(A), and

(b) if T 0
W = inf{t ≥ 0 | Wt = 0}, then T 0

W ≤ τd and the processes (C − CT 0
W
)1]T 0

W
,τd]

,
GS1]T 0

W
,τd]

and β1]T 0
W
,τd]

are indistinguishable from 0.

We denote by D
winit the family of all dynamic contracts that are associated with the initial

condition W0− = winit.

Remark B-2. From a mathematical point of view, the raison d’être of the extra component
that differentiates dynamic contracts from contracts in the sense of Definition A-1, namely,
the process β = Dβ(A), is to give sense to the constraints in (III) that involve the solution
W to the SDE (B.8). The constraints in (III).(b) are imposed in the definition of a dynamic
contract to mimic the properties stated in Lemma B-1.(III).

Remark B-3. The general definition of a dynamic contract that we have adopted here is
slightly different from the one given in Section 1.4, in the sense that Definition B-1 allows for
any random disciplinary dismissal time τd ≥ T 0

W , whereas the exposition in the main text
assumes that this random time identifies with the first hitting time of zero by W , namely,
τd = T 0

W . The advantage of adopting a more general definition, as we do here, is that it
allows us to derive the identity τd = T 0

W as an incentive-compatibility requirement (see
Lemma B-2). However, note that the notion of admissible dynamic contract that we define
in the next section (see Definition B-3) coincides with the one introduced in Section 1.4.

We can now introduce a general notion of admissibility for dynamic contracts, in line
with Definition A-2. Before doing so, we note that, given a dynamic contract D and a
stealing strategy A, the same credit risk theory results as the ones we used in the proof of
Lemma B-1.(I) imply that the manager’s total expected discounted payoff at the time of
his hiring, which is defined by (A.9), admits the expression

M(D, A) = E

[

∫

[0,τd]∩R+

dt (dCt + λdAt + qGtSt dt)

]

, (B.10)

where (C,S,G, τd) =
(

DC(A),DS(A),DG(A),Dτd(A)
)

and d is defined by (B.5).

Definition B-2. A dynamic contract D = (DC ,DS ,DG,Dτd ,Dβ) ∈ D
winit is generally

admissible if

M(D, 0) = max
A∈A

M(D, A) and M(D, 0) = w̄, (B.11)

where the manager’s total expected discounted payoff M is defined by (B.10).

We denote by D
winit

ga ⊆ D
winit the family of all generally admissible contracts with initial

condition W0− = winit.
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B.3 Proof of Lemma 2

The following result establishes sufficient conditions for a dynamic contract to be generally
admissible.

Lemma B-2. A dynamic contract D ∈ D
winit in the sense of Definition B-1 is generally

admissible in the sense of Definition B-2 if

winit = w̄, Dβ(A) ≥ λ and Dτd(A) = T 0
W for all A ∈ A, (B.12)

and the associated solution to (B.8) for A = 0 satisfies the transversality condition

lim
T→∞

e−rTE
[

WT1{T≤τd}
]

= 0, (B.13)

where r is the firm’s discount rate.

Proof. Consider any dynamic contract D = (DC ,DS ,DG,Dτd ,Dβ) ∈ D
winit and let C, S,

G, τd, β be the evaluations of the contract at any given A ∈ A that are as in Definition B-1.
Using (B.5), (B.8), and the integration by parts formula, we calculate

dT∧τdWT∧τd = winit −

∫

[0,T∧τd]
dt (dCt + βt dAt + qGtSt dt) + σNT∧τd , (B.14)

where N is the stochastic integral defined by

NT =

∫ T

0
dtβt dZt.

In view of (B.14) and the positivity of the stopped process W τd , which follows from the
properties of a dynamic contract, we can see that

0 ≤ dT∧τdWT∧τd ≤ winit + σNT∧τd . (B.15)

On the other hand, Doob’s L2-inequality, Itô’s isometry, (B.5) and (B.9) imply that

E





(

sup
T≥0

|NT |

)2


 ≤ 4 sup
T≥0

E
[

N2
T

]

= 4 sup
T≥0

E

[
∫ T

0
d
2
tβ

2
t dt

]

≤ 4E

[
∫ ∞

0
e−2rtβ2t dt

]

<∞, (B.16)

therefore, N is a martingale in H2.
Taking expectations in (B.14) and using the monotone convergence theorem, we derive

the expression

winit = E

[

∫

[0,τd]∩R+

dt (dCt + βt dAt + qGtSt dt)

]

+ lim
T→∞

E [dT∧τdWT∧τd ]

=M(D, A
)

+ E

[∫ τd

0
dt (βt − λ) dAt

]

+ lim
T→∞

E [dT∧τdWT∧τd ] ,
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where M is the manager’s total expected discounted payoff, which is defined by (B.10). In
light of this calculation and the positivity of the stopped process W τd , we can see that, if
winit = w̄, βt ≥ λ for all t ≤ τd, which can be true only if τd = T 0

W (see requirement (b) in
Definition B-1.(III)), and the transversality condition (B.13) holds true, then

M(D, A) ≤ w̄ for all A ∈ A

and

M(D, 0
)

= w̄ − lim
T→∞

E [dT∧τdWT∧τd ] = w̄,

the second equality following from (B.13) and the fact that dT < e−rT for all T > 0.
We conclude that (B.12) and (B.13) are sufficient conditions for a dynamic contract to be
generally admissible.

In light of Lemma B-2, we henceforth focus on dynamic contracts that satisfy the re-
quirements in (B.12) and (B.13), and refer to those as admissible dynamic contracts.

Definition B-3. An admissible dynamic contract is a function

D = (DC ,DS ,DG,Dβ) : A → PC(0)× PS(0) × PG(0)× Pβ(0)

such that

(I) (DC ,DS ,DG,Dτd ,Dβ) ∈ D
w̄
(see Definition B-1) where

Dτd(A) = inf{t ≥ 0 | Wt = 0} ∈ Pτd(A) ⊆ Pτd(0), for A ∈ A,

in which expression W is the solution to the SDE (B.8) for

C = DC(A), S = DS(A), G = DG(A), β = Dβ(A) and W0− = w̄;

(II) Dβ(A) ≥ λ for all A ∈ A;

(III) the solution to the SDE (B.8) for (C,S,G, β) =
(

DC(0),DS(0),DG(0),Dβ(0)
)

and
A = 0 satisfies the transversality condition (B.13) for τd = Dτd(0).

We denote by D the family of all admissible dynamic contracts.

B.4 The Firm’s Problem: Take Two

We now turn our attention to the firm’s optimisation problem, which amounts to finding a
contract D⋆ ∈ D that maximises the firm’s expected discounted profit. In view of (A.13)
and the same results from credit risk theory that we used to establish Lemma B-1.(I), we
can see that, given any contract D ∈ D, the firm’s size-adjusted expected discounted profit
at the start of any manager’s tenure F (D) should satisfy

F (D) = E

[ ∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)F (D) − κ− St
]

)

dt

−

∫

[0,τd]∩R+

Dt dCt +Dτd

[

F (D) − κ
]

]

, (B.17)
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where C = DC(0), S = DS(0), G = DG(0), τd = Dτd(0), for Dτd as in Definition B-3.(I),
and

Dt = exp

(

−rt−

∫ t

0
qGs ds

)

. (B.18)

To identify the optimal contract D⋆ ∈ D, we first consider the following stochastic
control problem.

Problem B-1. Solve the singular stochastic control problem whose value function v is
defined by

v(w) = sup
(C,S,G,β)∈S

E

[∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)v(w̄)− κ− St
]

)

dt

−

∫

[0,τd]∩R+

Dt dCt +Dτd

[

v(w̄)− κ
]

]

, for w ≥ 0, (B.19)

where D is defined by (B.18), S is the family of all control strategies (C,S,G, β) such that

C ∈ PC(0), G ∈ PG(0), S ∈ PS(0), β ∈ Pβ(0) with β ≥ λ,

the associated solution to the SDE

dWt =
[

̺Wt + qGt(Wt − St)
]

dt− dCt + σβt dZt, W0− = w ≥ 0, (B.20)

satisfies the transversality condition (B.13), and τd is the first hitting time of zero by W .

Given a solution to this problem, the firm’s optimisation problem reduces to solving the
following one.

Problem B-2. Given an optimal control strategy (C⋆, S⋆, G⋆, β⋆) ∈ S for Problem B-1,
determine an admissible dynamic contract D⋆ ∈ D such that

C⋆ = D⋆
C(0), S⋆ = D⋆

S(0), G⋆ = D⋆
G(0) and β⋆ = D⋆

β(0).

We call such an admissible dynamic contract optimal .

The firm’s expected discounted payoff at time 0 under an optimal contract D⋆ is

F (D⋆) = sup
D∈D

F (D) = v(w̄).
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C Verification Theorem and Optimal Contract

In Appendix B, the firm’s contracting problem was ultimately connected to a singular
stochastic control problem (Problem B-1). The next theorem expresses the solution to this
problem in terms of the solution to an appropriate HJB equation. Using this result, we
characterise the solution to Problem B-2, namely, we derive the optimal admissible dynamic
contract (see Theorem C-2 below). The optimality properties 1–5 stated in Section 2.1
follow immediately from these results.

Theorem C-1. Let u : R+ → R be a concave C2 function that satisfies the HJB equation

max

{

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w)

+ µ+ q
[

wu′(w) − u(w) + (1 + γ)u(w̄)− κ
]+
, −u′(w)− 1

}

= 0 (C.1)

with the Wentzel-type boundary condition

u(0) = u(w̄)− κ. (C.2)

Define

wg = sup
{

w ≥ 0 | wu′(w)− u(w) + (1 + γ)u(w̄)− κ ≥ 0
}

∨ 0 (C.3)

and

wc = inf
{

w ≥ 0 | u′(w) = −1
}

, (C.4)

with the usual conventions that sup ∅ = −∞ and inf ∅ = ∞, and assume that wc < ∞.
Furthermore, suppose that there exists a constant K > 0 such that

∣

∣u′(w)
∣

∣ ≤ K for all w > 0. (C.5)

The following statements hold true:

(I) If wg <∞, then wg < wc.

(II) The function u identifies with the value function v defined by (B.19), namely,

u(w) = v(w) for all w ≥ 0. (C.6)

(III) The solution (C⋆, S⋆, G⋆, β⋆) to Problem B-1 is such that the identities

S⋆t = 0, G⋆t = 1[0,wg∧wc](W
⋆
t ), β⋆t = λ, (C.7)

W ⋆
t ∈ [0, wc] and C⋆t =

∫

[0,t]
1[wc,∞[(W

⋆
s ) dC

⋆
s (C.8)

hold true for all t ∈ [0, τ⋆d ], where C⋆, W ⋆ are rigorously constructed as in the proof of
Theorem C-2.
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Proof. To show (I), we argue by contradiction and we assume that wc ≤ wg < ∞.
Combining the concavity of u with (C.1) and the definition (C.4) of wc, we can see that
u′(w) = −1 and u(w) = u(wc)− (w − wc) for all w ≥ wc. These observations imply that

u(w) −wu′(w) = u(w) + w = u(wc) + wc for all w ≥ wc.

In view of these identities, the assumption that wg ≥ wc, and the definition (C.3) of wg, we
obtain

u(w)− wu′(w) = u(wg) + wg = (1 + γ)u(w̄)− κ for all w ≥ wg,

which contradicts (C.3).
To show (II), we fix any initial condition w > 0 and any admissible control strategy

(C,S,G, β) ∈ S, where S is defined in the statement of Problem B-1. Using (B.20), the
dynamics

dDt = −(r + qGt)Dt dt

(see (B.18)), Itô’s formula and the integration by parts formula, we can see that, given any
time T > 0,

DT∧τdu(WT∧τd)

= u(w) −

∫

[0,T∧τd]
Dtu

′(Wt−) dCt +
∑

0≤t≤T∧τd

Dt

[

u(Wt)− u(Wt−)− u′(Wt−)∆Wt

]

+

∫ T∧τd

0
Dt

(

1

2
σ2β2t u

′′(Wt) +
[

̺Wt + qGt(Wt − St)
]

u′(Wt)−
(

r + qGt
)

u(Wt)

)

dt

+

∫ T∧τd

0
Dtσβtu

′(Wt) dZt.

In view of the fact that ∆Wt ≡Wt −Wt− = −∆Ct, we can see that

−

∫

[0,T∧τd]
Dtu

′(Wt−) dCt +
∑

0≤t≤T∧τd

Dt

[

u(Wt)− u(Wt−)− u′(Wt−)∆Wt

]

= −

∫ T∧τd

0
Dtu

′(Wt) dC
c
t +

∑

0≤t≤T∧τd

Dt

[

u(Wt− −∆Ct)− u(Wt−)
]

= −

∫ T∧τd

0
Dtu

′(Wt) dC
c
t −

∑

0≤t≤T∧τd

Dt

∫ ∆Ct

0
u′(Wt− −∆Ct + x) dx,

where Cc is the continuous part of the process C. Combining these identities with the
observation that

u(WT∧τd) = u(0)1{τd≤T} + u(WT )1{T<τd} =
[

u(w̄)− κ
]

1{τd≤T} + u(WT )1{T<τd},
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which follows from (C.2), we obtain

∫ T∧τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(w̄)− κ− St
]

)

dt−

∫

[0,T∧τd]
Dt dCt +Dτd

[

u(w̄)− κ
]

1{τd≤T}

= u(w) −DTu(WT )1{T<τd}

−

∫ T∧τd

0
Dt

[

u′(Wt) + 1
]

dCc
t −

∑

0≤t≤T∧τd

Dt

∫ ∆Ct

0

[

u′(Wt− −∆Ct + x) + 1
]

dx

+

∫ T∧τd

0
Dt

(

1

2
σ2β2t u

′′(Wt) + ̺Wtu
′(Wt)− ru(Wt) + µ

+ qGt

[

Wtu
′(Wt)− u(Wt) + (1 + γ)u(w̄)− κ− St

(

u′(Wt) + 1
)

]

)

dt

+

∫ T∧τd

0
Dtσβtu

′(Wt) dZt.

The concavity of u and the fact that it satisfies the gradient constraint u′ + 1 ≥ 0 imply
that

sup
b≥λ

[

b
2u′′(w)

]

= λ2u′′(w) and sup
s∈[0,w]

[

−s
(

u′(w) + 1
)]

= 0.

Therefore, since u satisfies the HJB equation (C.1),

∫ T∧τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(w̄)− κ− St
]

)

dt−

∫

[0,T∧τd]
Dt dCt +Dτd

[

u(w̄)− κ
]

1{τd≤T}

≤ u(w) −DTu(WT )1{T<τd} +

∫ T∧τd

0
Dtσβtu

′(Wt) dZt. (C.9)

In view of (C.5), we can see that
∣

∣u(w)
∣

∣ ≤
∣

∣u(0)
∣

∣ +Kw for all w ≥ 0, which, combined
with the transversality condition (B.13), implies that

lim
T→∞

E

[

DT

∣

∣u(WT )
∣

∣1{T<τd}

]

= 0.

On the other hand, we can use Itô’s isometry, (B.9) and (C.5), to calculate

E

[

(
∫ T∧τd

0
Dtσβtu

′(Wt) dZt

)2
]

= E

[
∫ T∧τd

0

[

Dtσβtu
′(Wt)

]2
dt

]

≤ σ2K2 E

[∫ T∧τd

0
e−2rtβ2t dt

]

<∞,

which implies that the stochastic integral in (C.9) is a square-integrable martingale. In
view of these results, we can take expectations in (C.9) and use the monotone convergence
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theorem to obtain

E

[
∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(w̄)− κ− St
]

)

dt−

∫

[0,τd]
Dt dCt +Dτd

[

u(w̄)− κ
]

]

= lim
T→∞

E

[
∫ T∧τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(w̄)− κ− St
]

)

dt

−

∫

[0,T∧τd]
Dt dCt +Dτd

[

u(w̄)− κ
]

1{τd≤T}

]

≤ u(w). (C.10)

Since (C,S,G, β) ∈ S has been chosen arbitrarily, it follows that

u(w) ≥ sup
(C,S,G,β)∈S

E

[
∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(w̄)− κ− St
]

)

dt

−

∫

[0,τd]
Dt dCt +Dτd

[

u(w̄)− κ
]

]

. (C.11)

The concavity of u and the fact that this function satisfies the HJB equation (C.1) imply
that

u′(w) = −1 for all w ≥ wc

and

wu′(w)− u(w) + (1 + γ)u(w̄)− κ

{

≥ 0, for all w ∈ [0, wg]

< 0, for all w ∈ ]wg,∞[ ∩ [0, wc]

}

.

In view of these observations, we can check that, if (C⋆, S⋆, G⋆, β⋆) is such that (C.7)–
(C.8) hold true, then (C.9) holds with equality. We also note that this control strategy
is such that the transversality condition (B.13) is satisfied because W ⋆ takes values in the
bounded interval [0, wc]. Following the same steps as above, we can see that (C.10) holds
with equality for this control strategy, which combined with (C.11), implies that

u(w) = E

[∫ τ⋆
d

0
D
⋆
t

(

µ+ qG⋆t
[

(1 + γ)u(w̄)− κ
]

)

dt−

∫

[0,τ⋆
d
]
D
⋆
t dC

⋆
t +D

⋆
τ⋆
d

[

u(w̄)− κ
]

]

= sup
(C,S,G,β)∈S

E

[
∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(w̄)− κ− St
]

)

dt

−

∫

[0,τd]
Dt dCt +Dτd

[

u(w̄)− κ
]

]

.

It follows that (C.6) holds true and (C⋆, S⋆, G⋆, β⋆) ∈ S is optimal.
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The next result provides the solution to the dynamic contracting Problem B-2. The
filtration (F̂t) =

(

F̂t(A)
)

and the families PC(A), PS(A), PG(A), Pβ(A) involved in the
statement of the theorem are as at the beginning of Appendix B (see (B.1)–(B.4) and (B.9)
in particular).

Theorem C-2. Suppose that the HJB equation (C.1)–(C.2) has a concave C2 solution u
such that the assumptions of Theorem C-1 are all satisfied. The following statements hold
true:

(I) For all A ∈ A, there exists a process C = C(A) ∈ PC(A) such that, apart from a jump
of size ∆C0 = (w̄ − wc)

+ at time 0, C is continuous,

Wt ∈ [0, wc] and Ct =

∫

[0,t]
1[wc,∞[(Ws) dCs for all t ≥ 0, (C.12)

where the (F̂t)-adapted process W is the strong solution to the SDE

dWt =
[

̺+ q1[0,wg∧wc](Wt)
]

Wt dt− dCt + λ (dŶt − µdt)

=
[

̺+ q1[0,wg∧wc](Wt)
]

Wt dt− dCt − λdAt + σλ dZt, W0− = w̄. (C.13)

(II) The function D⋆ = (D⋆
C ,D

⋆
S ,D

⋆
G,D

⋆
β) : A → PC(0) × PS(0) × PG(0) × Pβ(0) that is

defined by

D⋆
S = 0, D⋆

G = 1[0,wg∧wc](W ), D⋆
β = λ,

and by identifying D⋆
C(A) with C(A) in (I) above, where W is given by (C.13), provides the

solution to Problem B-2, namely, it is an optimal admissible dynamic contract.

Proof. In view of Theorem C-1 and the results asserted in (I), it is straightforward to verify
that (II) is indeed true. To prove (I), we fix any A ∈ A and we recall that Ŷt = µt−At+σZt.
First, we assume that wg = 0, and we note that the construction corresponding to the case
wg = ∞ (see also part (I) of the previous theorem) is identical if we replace ̺ by ̺+ q. In
this case, we rewrite the SDE (C.13) in the form

e−̺tWt = w̄ − Ĉt + λ

∫ t

0
e−̺s (dŶs − µds), (C.14)

where

Ĉt =

∫

[0,t]
e−̺s dCs.

Noting that

Wt ≤ wc ⇔ −w̄ − λ

∫ t

0
e−̺s (dŶs − µds) + e−̺twc + Ĉt ≥ 0,

the analysis of Skorokhod’s equation (see Lemma 6.14 in Karatzas and Shreve (1988),
Chapter 3) implies that the process Ĉ defined by

Ĉt = sup
s≤t

(

w̄ + λ

∫

s

0
e−̺s (dŶs − µds)− e−̺swc

)+

61



is such that

Wt ∈ [0, wc] and Ĉt =

∫

[0,t]
1[wc,∞[(Ws) dĈs for all t ≥ 0,

where W is the corresponding process in (C.14). If we define

Ct =

∫

[0,t]
e̺s dĈs,

then we can see that

Ct =

∫

[0,t]
e̺s dĈs =

∫

[0,t]
e̺s1[wc,∞[(Ws) dĈs =

∫

[0,t]
1[wc,∞[(Ws) dCs.

By construction, C is (F̂t)-adapted. Using Jensen’s inequality, Doob’s L2-inequality and
Itô’s isometry, we calculate

(

E

[

sup
T≥0

∣

∣

∣

∣

∫ T

0
e−̺t dZt

∣

∣

∣

∣

])2

≤ E





(

sup
T≥0

∣

∣

∣

∣

∫ T

0
e−̺t dZt

∣

∣

∣

∣

)2




≤ 4 sup
T≥0

E

[

(∫ T

0
e−̺t dZt

)2
]

= 4

∫ ∞

0
e−2̺t dt =

2

̺
. (C.15)

In view of this estimate, we can see that

E

[

∫

[0,∞[
e−̺t dCt

]

= E

[

lim
T→∞

ĈT

]

≤ E

[

sup
T≥0

(

w̄ + σλ

∫ T

0
e−̺t dZt

)+
]

≤ w̄ + σλE

[

sup
T≥0

∣

∣

∣

∣

∫ T

0
e−̺t dZt

∣

∣

∣

∣

]

≤ w̄ + σλ

√

2

̺
.

It follows that C ∈ PC(A), and C is the required process.
Before addressing the proof of (I) if wg ∈ ]0, wc[, we first consider the existence and

uniqueness of a strong solution to the SDE

dWt =
[

̺+ q1[0,wg](Wt)
]

Wt dt− dCt − λdAt + σλ dZt, W0 = w̄ ∈ ]0, wc[, (C.16)

where wg ∈ ]0, wc[, and C ∈ PC(A) is continuous with C0 = 0. To this end, we consider
the strictly positive function

pd(w) = exp

(

−

∫ w

0

2
[

̺+ q1[0,wg](ℓ)
]

ℓ

σ2λ2
dℓ

)

=















exp
(

− ̺
σ2λ2

w2
)

, if w < 0

exp
(

− ̺+q
σ2λ2

w2
)

, if w ∈ [0, wg]

exp
(

− ̺
σ2λ2

w2 −
qw2

g

σ2λ2

)

, if w > wg
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and the strictly increasing function p : R → ]p, p[ defined by

p(w) =

∫ w

0
pd(ℓ) dℓ,

where

p = lim
w→−∞

p(w) = −
σλ

2

√

π

̺
and p = lim

w→∞
p(w) ∈ ]0,∞[.

Using Itô’s formula, we can see that, if we define U = p(W ), then

dUt = pd ◦ p
−1(Ut) dΓt, U0 = p(w̄),

where

Γt = −Ct − λAt + σλZt ≡ −Ct − λµt+ λŶt.

This SDE has a unique (F̂t)-adapted strong solution up to the exit time of U from any
interval [u, u] such that U0 = p(w̄) ∈ ]u, u[ and [u, u] ⊆ ]p, p[ because Γ is a continuous (F̂t)-
semimartingale and pd ◦ p

−1 : ]p, p[ → ]0, 1] is a locally Lipschitz function (see Theorem 6

in Protter (1992), Chapter V). It follows that the SDE (C.16) has a unique (F̂t)-adapted
strong solution up to the exit time of W from any bounded interval containing W0 = w̄.
Furthermore, the expression

Wt = Kt

(

w̄ −

∫ t

0
K−1
s (dCs + λdAs − σλ dZs)

)

,

where

Kt = exp

(∫ t

0

[

̺+ q1[0,wg](Ws)
]

ds

)

∈
[

e̺t, e(̺+q)t
]

,

implies that the solution to the SDE (C.16) does not explode in finite time, namely,

P

(

supt∈[0,T ] |Wt| <∞
)

= 1 for all T ≥ 0.

We return to the proof of (I), now considering the case when wg ∈ ]0, wc[. We first
assume that w̄ < wc. To construct the required C, we determine a sequence of processes
(Ci, i ≥ 0) and an increasing sequence of (F̂t)-stopping times (νi, i ≥ 0) such that, for all
i ≥ 0,

Ci ∈ PC(A) and Ci is continuous with Ci0 = 0, (C.17)

W i
t ∈ [0, wc] and Cit =

∫

[0,t]
1[wc,∞[(W

i
s) dC

i
s for all t ∈ [0, νi], (C.18)

W i
νi1{νi<∞} =

{

wc1{νi<∞}, if i is even

wg1{νi<∞}, if i is odd

}

, (C.19)

and Cit1{νi<∞} = Ciνi1{νi<∞} for all t ≥ νi, (C.20)
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where W i is the solution to the SDE

dW i
t =

[

̺+ q1[0,wg](W
i
t )
]

W i
t dt− dCit + λ (dŶt − µdt), W i

0 = w̄. (C.21)

To start with, we define

C0 = 0 and ν0 = inf
{

t ≥ 0 | W 0
t ≥ wc

}

,

and we note that (C.17)–(C.20) hold true trivially for these choices of C0, ν0 and for W 0

being the solution to (C.21).
Given i ≥ 0 even and Ci, νi such that (C.17)–(C.20) hold true, we consider the processes

Ĉi+1
t = 1{νi≤t}∩{νi<∞} sup

s∈[νi,t]

(

wc + λ

∫

s

νi
e−̺(s−ν

i) (dŶs − µds)− e−̺(s−ν
i)wc

)+

,

W̃ i+1
t = e̺(t−ν

i)

(

wc − Ĉi+1
t + λ

∫ t

νi
e−̺(s−ν

i) (dŶs − µds)

)

1{νi≤t}∩{νi<∞},

and we note that Ĉi+1 is a continuous increasing process such that Ĉi+1
t 1{t≤νi} = 0. We

then define

νi+1 = inf
{

t ≥ νi | W̃ i+1
t ≤ wg

}

and Ci+1
t = Cit +

∫ t∧νi+1

0
e̺(s−ν

i) dĈi+1
s .

In view of the analysis in the first paragraph of this proof, we can see that (C.18)–(C.20)
hold true for i + 1 in place of i. In particular, the corresponding solution W i+1 to (C.21)
is such that W i+1

t = W̃ i+1
t ∈ ]wg, wc] for all t ∈ [νi, νi+1[. We shall verify that (C.17) also

holds true in the penultimate paragraph of the proof.
Given i ≥ 1 odd and Ci, νi such that (C.17)–(C.20) hold true, we define Ci+1 = Ci and

νi+1 = inf{t ≥ νi | W i
t ≥ wc}.

It is immediate to verify that (C.17)–(C.20) hold true for i+ 1 in place of i.
In view of the observations that

Ci+1
t 1{t≤νi} = Cit1{t≤νi} for all t ≥ 0 and i ≥ 0,

and limi→∞ νi = ∞, we can see that the required process C is given by

Ct =

∞
∑

i=1

Cit1{νi−1≤t<νi}.

To see the limit invoked here, we consider the SDE

dW
2i
t =

[

̺+ q1[0,wg]

(

W
2i
t

)

]

W
2i
t dt− dC2i

t − λdAν
2i−1

t + σλ dZt, W
2i
0 = w̄,

for any i ≥ 1, where Aν
2i−1

t = At∧ν2i−1 , and we define

ν2i = inf
{

t ≥ ν2i−1 | W
2i
t ≥ wc

}

.
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In view of the observations that

W
2i
ν2i−11{ν2i−1<∞} =W 2i

ν2i−11{ν2i−1<∞} = wg1{ν2i−1<∞},

which follows from the fact that

W
2i
t 1{t≤ν2i−1} =W 2i

t 1{t≤ν2i−1},

and

W
2i
t 1{t≥ν2i−1} =

(

wg +

∫ t

ν2i−1

[

̺+ q1[0,wg]

(

W
2i
s

)

]

W
2i
s ds+ σλ(Zt − Zν2i−1)

)

1{t≥ν2i−1}

≥W 2i
t 1{t≥ν2i−1},

we can see that ν2i ≤ ν2i and that the strictly positive random variables ν2i− ν2i−1, i ≥ 1,
are independent and identically distributed. Combining these facts with the law of large
numbers, we obtain

lim
i→∞

ν2i

i
> lim

i→∞

1

i

i
∑

k=1

(ν2k − ν2k−1) ≥ lim
i→∞

1

i

i
∑

k=1

(ν2k − ν2k−1) = E
[

ν2 − ν1
]

> 0,

which implies that limi→∞ νi = ∞, as claimed. Furthermore, given any i ≥ 1,

E

[

e−̺ν
2i
]

≤ E

[

i
∏

k=1

e−̺(ν
2k−ν2k−1)

]

=
(

E

[

e−̺(ν
2−ν1)

])i

. (C.22)

By construction, the processes Ci, i ≥ 0, and C are all continuous, increasing and
(F̂t)-adapted. To show that these processes satisfy the integrability condition (A.4) and
thus conclude that they belong to PC(A) as well as that (C.17) holds true, we consider the
probability spaces (Ω,F , (F i

t ),Q
i), where (F i

t ) are the filtrations defined by F i
t = FZ

ν2i+t

and Qi are the conditional probability measures P(· | ν2i < ∞) that have Radon-Nikodym
derivatives with respect to P given by

dQi

dP
=

1

P(ν2i <∞)
1{ν2i<∞}.

In this context, the processes Zi defined by Zit = (Zν2i+t − Zν2i)1{ν2i<∞} are standard

(F i
t )-Brownian motions that are independent of F i

0 = FZ
ν2i

(see Exercise 3.21 in Revuz and
Yor (1999), Chapter IV). Furthermore,

E

[

1{ν2i<∞}e
−̺ν2i sup

T≥ν2i

∣

∣

∣

∣

∫ T

ν2i
e−̺(t−ν

2i) dZt

∣

∣

∣

∣

]

= P(ν2i <∞)EQi
[

e−̺ν
2i
]

EQi

[

sup
T≥ν2i

∣

∣

∣

∣

∫ T

ν2i
e−̺(t−ν

2i) dZt

∣

∣

∣

∣

]

= E

[

e−̺ν
2i
]

EQi

[

sup
T≥0

∣

∣

∣

∣

∫ T

0
e−̺t dZit

∣

∣

∣

∣

]

≤ K E

[

e−̺ν
2i
]

,
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where EQi

denotes expectation with respect to Qi and the constant K can be determined
as in (C.15). Combining such an estimate with (C.22), we calculate

E

[∫ ∞

0
e−̺t dCt

]

= E

[

∞
∑

i=0

1{ν2i<∞}

∫ ν2i+1

ν2i
e−̺t dCt

]

=
∞
∑

i=0

E

[

1{ν2i<∞}e
−̺ν2i lim

T→∞
Ĉ2i+1
T∧ν2i+1

]

≤
∞
∑

i=0

(

wc E

[

e−̺ν
2i
]

+ σλE

[

1{ν2i<∞}e
−̺ν2i sup

T≥ν2i

∣

∣

∣

∣

∫ T

ν2i
e−̺(t−ν

2i) dZt

∣

∣

∣

∣

])

≤ (wc + σλK)
∞
∑

i=0

(

E

[

e−̺(ν
2−ν1)

])i

<∞.

We conclude that the processes Ci, i ≥ 0, and C all satisfy the integrability condition (A.4)
and they belong to PC(A), in particular, C is the required process.

Finally, if wg ∈ ]0, wc[ and w̄ ≥ wc, then we can make the required construction by
setting ∆C0 = (w̄ − wc)

+ and then following exactly the same arguments as above simply
swapping the order of considerations associated with even and odd indices.
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D The General Solution to a Homogeneous ODE

In this appendix, we review a range of results regarding the solvability of a second-order
linear ODE on which part of our analysis has been based. All of the claims that we do not
prove follow from standard theory of linear one-dimensional diffusions (e.g., see Borodin
and Salminen (2002), Chapter II). To fix ideas, we consider the process

dW̄t = ζW̄t dt+ σλ dZt, W̄0 > 0, (D.1)

with absorption at 0, where ζ > 0 is a given constant. Given any constant δ > 0, there
exists a pair of C∞ functions ϕ,ψ : R+ → R+ such that

ϕ(w2) = ϕ(w1)Ew2

[

e−δTw1

]

for all w1 < w2, (D.2)

and

ψ(w1) = ψ(w2)Ew1

[

e−δTw2

]

≡ ψ(w2)Ew1

[

e−δTw21{Tw2
<T0}

]

for all w1 < w2, (D.3)

where Ewj
denotes expectation with respect to the probability measure Pwj

under which
the solution to (D.1) is such that Pwj

(W̄0 = wj) = 1, for j = 1, 2, and Tw denotes the first
hitting time of {w}, which is defined by

Tw = inf{t ≥ 0 | W̄t = w}, for w ≥ 0.

Note that, Pw(T0 < ∞) > 0 and Pw(T∞ < ∞) = 0 for all w ∈ ]0,∞[. These functions are
unique, modulo multiplicative constants,

0 < ϕ(w) and ϕ′(w) < 0 for all w > 0, (D.4)

0 < ψ(w) and ψ′(w) > 0 for all w > 0, (D.5)

ϕ(0) = lim
w↓0

ϕ(w) <∞, ϕ′(0) = lim
w↓0

ϕ′(w) > −∞, (D.6)

ψ(0) = lim
w↓0

ψ(w) = 0, ψ′(0) = lim
w↓0

ψ′(w) <∞, (D.7)

lim
w→∞

ϕ(w) = 0 and lim
w→∞

ψ(w) = ∞. (D.8)

It is worth noting that (D.6)–(D.8) follow from the fact that 0 (resp., ∞) is an absorbing
(resp., natural) boundary point. Furthermore, every solution to the second-order linear
homogenous ODE

1

2
σ2λ2f ′′(w) + ζwf ′(w)− δf(w) = 0 (D.9)

in ]0,∞[ is given by

f(w) = Aϕ(w) +Bψ(w), (D.10)

for some constants A,B ∈ R. For future reference, we note that the fact that ϕ, ψ satisfy
the ODE (D.9) implies that

ϕ = ϕ

(

· ;
ζ

σ2λ2
,

δ

σ2λ2

)

and ψ = ψ

(

· ;
ζ

σ2λ2
,

δ

σ2λ2

)

,
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namely, the two functions are parametrised by the values of ζ
σ2λ2

and δ
σ2λ2

only.
In the rest of our analysis, we assume that ϕ, ψ have been normalised through multi-

plication by appropriate constants so that

ϕ(0) = 1 and ψ′(0) = 1. (D.11)

Accordingly, their Wronskian admits the expression

ϕ(w)ψ′(w)− ϕ′(w)ψ(w) = exp

(

−

∫ w

0

2ζx

σ2λ2
dx

)

= exp

(

−
ζ

σ2λ2
w2

)

. (D.12)

In our analysis, we will make use of the following results.

Lemma D-1. The following statements hold true.

(I) The function ϕ satisfies

ϕ′′(0) ≡ lim
w↓0

ϕ′′(w) =
2δ

σ2λ2
, (D.13)

lim
w↓0

[

ϕ(w) − wϕ′(w)
]

= 1, lim
w→∞

[

ϕ(w) − wϕ′(w)
]

= 0, (D.14)

and
d

dw

[

ϕ(w) − wϕ′(w)
]

≡ −wϕ′′(w) < 0 for all w > 0. (D.15)

(II) If ζ > δ, then

ψ′′(0) ≡ lim
w↓0

ψ′′(w) = 0, lim
w↓0

[

ψ(w) − wψ′(w)
]

= 0, (D.16)

and
d

dw

[

ψ(w) − wψ′(w)
]

≡ −wψ′′(w) > 0 for all w > 0. (D.17)

Furthermore,

lim
w↓0

ψ′′(w)

ϕ′′(w)
= 0,

(

ψ′′

ϕ′′

)′

(w) < 0 for all w > 0, and lim
w→∞

ψ′′(w)

ϕ′′(w)
= −∞. (D.18)

Proof. The properties (D.4), (D.6), (D.8) and the fact that ϕ satisfies the ODE (D.9)
imply immediately (D.13)–(D.15).

The limits in (D.16) follow immediately once we combine (D.7) with the fact that ψ
satisfies the ODE (D.9). Since ψ′ > 0 satisfies the ODE

1

2
σ2λ2f ′′′(w) + ζwf ′′(w) + (ζ − δ)f ′(w) = 0 (D.19)

in ]0,∞[, which follows from differentiating (D.9), we can see that ψ′′′(w) < 0 for all w > 0
such that ψ′′(w) = 0. Furthermore, (D.16) and (D.19) imply that

ψ′′′(0) ≡ lim
w↓0

ψ′′′(w) = −(ζ − δ)ψ′(0) = −(ζ − δ) < 0.

This inequality and (D.16) imply that ψ′′(w) < 0 for all w > 0 sufficiently small. In view of
these observations, a simple contradiction argument reveals that ψ′′(w) < 0 for all w > 0,
and (D.17) follows.
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To establish (D.18), we note that the first limit follows immediately from (D.13) and

(D.16). If we define b(w) = ψ′′(w)
ϕ′′(w) , then we can use the fact that ϕ, ψ satisfy the ODEs

(D.9) and (D.19) to calculate

b′(w) = −
4δ(ζ − δ)

σ4λ4
exp

(

−
ζ

σ2λ2
w2

)

[

ϕ′′(w)
]−2

< 0,

which establishes the inequality in (D.18). On the other hand, we can differentiate (D.12)
to obtain

ϕ(w)b(w) − ψ(w) = −
2ζ

σ2λ2
w exp

(

−
ζ

σ2λ2
w2

)

[

ϕ′′(w)
]−1

=
ζσ2λ2

2δ(ζ − δ)
wϕ′′(w)b′(w). (D.20)

Furthermore, we note that, since ϕ satisfies (D.19),

lim
w→∞

wϕ′′(w) = lim
w→∞

[

−
σ2λ2

2ζ
ϕ′′′(w)−

ζ − δ

ζ
ϕ′(w)

]

= 0. (D.21)

We now argue by contradiction and we assume that limw→∞ b(w) > −∞. Such an assump-
tion implies that limw→∞

[

ϕ(w)b(w)−ψ(w)
]

= −∞ thanks to (D.8). This limit and (D.20)
imply that limw→∞wϕ′′(w)b′(w) = −∞. Combining this result with (D.21), we can see
that limw→∞ b′(w) = −∞, which contradicts the assumption that limw→∞ b(w) > −∞, and
the second limit in (D.18) follows.
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E The High-Growth Case

In this appendix, we consider the case arising from the verification Theorem C-1 when
wg = wc. In this context, we construct an appropriate solution to the HJB equation

max

{

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w)− (r + q)u(w)

+ µ+ q
[

(1 + γ)u(w̄)− κ
]

, − u′(w)− 1

}

= 0 (E.1)

that satisfies the Wentzel-type boundary condition

u(0) = u(w̄)− κ. (E.2)

To this end, we look for a concave C2 function u : R+ → R and a free-boundary point
wc > 0 such that u satisfies the ODE

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w) − (r + q)u(w) + µ+ q

[

(1 + γ)u(w̄)− κ
]

= 0 (E.3)

in ]0, wc[, and is given by u(w) = u(wc)− (w−wc) for w > wc. In particular, we look for a
solution to (E.1)–(E.2) of the form

u(w) =

{

Aϕ1(w) +Bψ1(w) +
µ+q[(1+γ)u(w̄)−κ]

r+q , if w ≤ wc

u(wc)− (w − wc), if w > wc

}

, (E.4)

for some constants A,B ∈ R, where

ϕ1 = ϕ1

(

· ;
̺+ q

σ2λ2
,
r + q

σ2λ2

)

and ψ1 = ψ1

(

· ;
̺+ q

σ2λ2
,
r + q

σ2λ2

)

,

identify with the functions ϕ and ψ in Appendix D for ζ = ̺+ q and δ = r + q.

E.1 Analysis of the Free-Boundary Problem

We start with the case arising when it turns out that wc ≥ w̄. To determine the constants
A, B and the free-boundary point wc, we require that u should be C2 at wc, which yields
the system of equations

u′(wc−) ≡ Aϕ′
1(wc) +Bψ′

1(wc) = −1 ≡ u′(wc+) (E.5)

and

u′′(wc−) ≡ Aϕ′′
1(wc) +Bψ′′

1 (wc) = 0 ≡ u′′(wc+). (E.6)

For future reference, we observe that, given any point wc > 0, the solution to (E.3) satisfying
these conditions is such that

G(wc) = 0, (E.7)
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where

G(w) = −(r + q)u(w) − (̺+ q)w + µ+ q
[

(1 + γ)u(w̄)− κ
]

. (E.8)

Also, we note that the boundary condition (E.2) implies that

u(0) ≡ A+
µ+ q

[

(1 + γ)u(w̄)− κ]

r + q

= Aϕ1(w̄) +Bψ1(w̄) +
µ+ q

[

(1 + γ)u(w̄)− κ]

r + q
− κ ≡ u(w̄)− κ (E.9)

(see also (D.7) and (D.11)).
Using the fact that ϕ1, ψ1 satisfy (D.9) and (D.12) in Appendix D for ζ = ̺ + q and

δ = r + q, we can see that the equations (E.5)–(E.6) are equivalent to

A = exp

(

̺+ q

σ2λ2
w2
c

)[

ψ1(wc)−
̺+ q

r + q
wcψ

′
1(wc)

]

=
σ2λ2

2(r + q)
exp

(

̺+ q

σ2λ2
w2
c

)

ψ′′
1 (wc) < 0 (E.10)

and

B = − exp

(

̺+ q

σ2λ2
w2
c

)[

ϕ1(wc)−
̺+ q

r + q
wcϕ

′
1(wc)

]

= −
σ2λ2

2(r + q)
exp

(

̺+ q

σ2λ2
w2
c

)

ϕ′′
1(wc) < 0, (E.11)

the inequalities following thanks to the results in Lemma D-1. Substituting these expres-
sions for A and B in (E.9), we obtain the equation

h(w̄, wc) = −
2κ(r + q)

σ2λ2
, (E.12)

where

h(w̄, w) = h

(

w̄, w;
̺+ q

σ2λ2
,
r + q

σ2λ2

)

= exp

(

̺+ q

σ2λ2
w2

)

[

ψ1(w̄)ϕ
′′
1(w) +

(

1− ϕ1(w̄)
)

ψ′′
1 (w)

]

.

In our analysis below, we will also need the function H defined by

H(w̄) = h(w̄, w̄)

= exp

(

̺+ q

σ2λ2
w̄2

)

[

ψ1(w̄)ϕ
′′
1(w̄) +

(

1− ϕ1(w̄)
)

ψ′′
1 (w̄)

]

= exp

(

̺+ q

σ2λ2
w̄2

)

ψ′′
1 (w̄) +

2(̺+ q)

σ2λ2
w̄, (E.13)

where the last equality follows from a calculation that uses the fact that ϕ1 and ψ1 satisfy
(D.9) and (D.12) for ζ = ̺+ q and δ = r + q.
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Lemma E-1. There exist points w̄‡ = w̄‡

(

̺+q
σ2λ2

, r+q
σ2λ2

)

and w̄† = w̄†

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

such
that

0 < w̄‡ < w̄†, H(w̄)

{

> 0, if w̄ ∈ ]0, w̄‡[

< 0, if w̄ > w̄‡

}

and H(w̄†) = −
2κ(r + q)

σ2λ2
, (E.14)

as well as a unique point wc = wc

(

w̄, ̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

> 0 such that (E.12) holds true. These
points are such that

w̄ ≤ w̄† ⇔ wc ≥ w̄ and w̄ = w̄† ⇔ wc = w̄. (E.15)

Furthermore, if the problem data is such that w̄ ≤ w̄†, then the function u defined by (E.4)
for A, B given by (E.10), (E.11), and wc being the solution to (E.12), is a concave C2

solution to the HJB equation (E.1) that satisfies the boundary condition (E.2) as well as
the inequality

∣

∣u′(w)
∣

∣ ≤ K for all w ≥ 0, (E.16)

for some constant K > 0.

Proof. Differentiating h and using the fact that the functions ϕ1, ψ1 satisfy (D.19) with
ζ = ̺+ q and δ = r + q, we obtain

∂h(w̄, w)

∂w
= −

2(̺− r)

σ2λ2
exp

(

̺+ q

σ2λ2
w2

)

[

ψ1(w̄)ϕ
′
1(w) +

(

1− ϕ1(w̄)
)

ψ′
1(w)

]

and

∂2h(w̄, w)

∂w2
= −

4(̺− r)(r + q)

σ4λ4
exp

(

̺+ q

σ2λ2
w2

)

[

ψ1(w̄)ϕ1(w) +
(

1− ϕ1(w̄)
)

ψ1(w)
]

.

Recalling the properties (D.4)–(D.5), (D.8) and (D.11) of ϕ1 and ψ1, we can see that

∂2h(w̄, w)

∂w2
< 0 for all w > 0, lim

w→∞

∂2h(w̄, w)

∂w2
= −∞ and lim

w→∞
h(w̄, w) = −∞.

Combining these observations with the fact that h(w̄, 0) = 2(r+q)
σ2λ2

ψ1(w̄) > 0 (see also (D.13)
and (D.16)), we can see that there exists a unique wc > 0 such that (E.12) holds true.
Furthermore,

wc ≥ w̄ ⇔ H(w̄) ≥ −
2κ(r + q)

σ2λ2
. (E.17)

To show that there exist points 0 < w̄‡ < w̄† such that (E.14) and (E.15) hold true, we
differentiate H to obtain

H ′(w̄) =
2(̺+ q)

σ2λ2
−

2(̺− r)

σ2λ2
exp

(

̺+ q

σ2λ2
w̄2

)

ψ′
1(w̄)
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and

H ′′(w̄) = −
4(̺− r)(r + q)

σ4λ4
exp

(

̺+ q

σ2λ2
w̄2

)

ψ1(w̄).

It follows thatH is strictly concave and limw̄→∞H ′′(w̄) = −∞, which implies that limw̄→∞H(w̄) =
−∞. Combining these observations with the calculations

H(0) = 0 and H ′(0) =
2(r + q)

σ2λ2
> 0

(see also the normalisation of ϕ and ψ in (D.11)), we can see that there exist unique
0 < w̄‡ < w̄† such that the inequalities in (E.14) hold true. Furthermore, (E.15) follows
immediately from (E.14) and (E.17).

By construction, the function u defined by (E.4) is C2 and satisfies the boundary con-
dition (E.2). To complete the proof, we need to show that u is concave, and that the
inequalities

u′(w) ≥ −1 for all w ∈ [0, wc[ (E.18)

and

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w) − (r + q)u(w)

+ µ+ q
[

(1 + γ)u(w̄)− κ
]

≤ 0 for all w > wc (E.19)

hold true.
To show that (E.18) holds with strict inequality and that the restriction of u in ]0, wc[

is strictly concave, we define

w̃ = sup
{

w ∈ [0, wc[ | u
′(w) ≤ −1

}

∨ 0 ∈ [0, wc[, (E.20)

with the usual convention that sup ∅ = −∞. The inequality w̃ < wc stated here follows
immediately once we combine the boundary conditions u′′(wc) = 0 and u′(wc) = −1 with
the observation that limw↑wc

u′′′(w) > 0, which is true because u′ satisfies the ODE

1

2
σ2λ2u′′′(w) + (̺+ q)wu′′(w) + (̺− r)u′(w) = 0

in ]0, wc[. The fact that u satisfies the ODE (E.3) in ]0, wc[ also implies that

1

2
σ2λ2u′′(w) + (̺+ q)w

[

u′(w) + 1
]

+G(w) = 0, (E.21)

where G is defined by (E.8). In view of the assumption that ̺ > r (see condition (1)) and
the definition of w̃, we can see that

G′(w) = −(r + q)
[

u′(w) + 1
]

− (̺− r) < 0 for all w ∈ [w̃, wc],

which, combined with (E.7), implies that G(w) > 0 for all w ∈ [w̃, wc[. This observation,
the definition (E.20) of w̃, and (E.21) imply that

u′′(w) < 0 for all w ∈ [w̃, wc[.

73



This result and the boundary condition u′(wc) = −1 imply that u′(w) > −1 for all w ∈
[w̃, wc[. Combining this inequality with the definition of w̃ and the continuity of u′, we can
see that w̃ = 0. Furthermore, (E.18) holds true with strict inequality and the restriction of
u in ]0, wc[ is strictly concave.

Using (E.4), we can see that (E.19) is equivalent to

−(̺+ q)
[

wc + (w − wc)
]

− (r + q)
[

u(wc)− (w − wc)
]

+ µ+ q
[

(1 + γ)u(w̄)− κ
]

≤ 0 for all w > wc.

In view of (E.7), we note that this inequality is equivalent to −(̺− r)(w −wc) ≤ 0, which
holds true because ̺ > r.

Finally, we note that (D.6)–(D.7) and the fact that A,B ∈ R imply that limw↓0

∣

∣u′(w)
∣

∣ =
∣

∣Aϕ′(0) +Bψ′(0)
∣

∣ <∞. Combining this observation with the continuity of u′ and the fact
that u′(w) = −1 for all w ≥ wc, we can see that (E.16) holds true.

We next consider the case arising when it turns out that wc < w̄. In this case, C2-
continuity of the function u defined by (E.4) at wc implies that the parameters A and B
should again be given by (E.10) and (E.11). On the other hand, (E.4) and the inequality
wc < w̄ imply that

u(w̄) = u(wc)− (w̄ − wc)

= Aϕ1(wc) +Bψ1(wc) +
µ+ q[(1 + γ)u(w̄)− κ]

r + q
− (w̄ − wc).

Using this expression and (E.10)–(E.11), we can see that the boundary condition (E.2)
yields the equation

ĥ(wc, w̄) = −
2κ(r + q)

σ2λ2
, (E.22)

where

ĥ(w, w̄) = H(w) +
2(r + q)

σ2λ2
(w̄ − w),

with H being defined by (E.13).

Lemma E-2. There exists a unique point wc = wc

(

w̄, ̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

> 0 such that (E.22)

holds true. Also, wc < w̄ if and only if w̄ > w̄†, where the point w̄† = w̄†

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

> 0
is as in Lemma E-1. Furthermore, if the problem data is such that w̄ > w̄†, then the
function u defined by (E.4) for A, B given by (E.10), (E.11), and wc being the solution
of (E.22), is a concave C2 solution to the HJB equation (E.1) that satisfies the boundary
condition (E.2) as well as the inequality

∣

∣u′(w)
∣

∣ ≤ K for all w ≥ 0,

for some constant K > 0.
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Proof. In view of the analysis of the function H in the proof of Lemma E-1, we can see
that ĥ(·, w̄) is strictly concave, ĥ(0, w̄) = 2(r+q)

σ2λ2
w̄ > 0 and limw→∞ ĥ(w, w̄) = −∞. It

follows that there exists a unique solution wc > 0 to the equation (E.22). Furthermore, this

solution is strictly less that w̄ if and only if ĥ(w̄, w̄) = H(w̄) < −2κ(r+q)
σ2λ2

, which is equivalent
to w̄ > w̄†. The rest of the proof is exactly the same as the proof of Lemma E-1.

The following result provides a necessary and sufficient condition for the function u to
identify with the value function.

Lemma E-3. The concave C2 function u studied in Lemma E-1 or Lemma E-2, depending
on whether w̄ ≤ w̄† or not, where w̄† > 0 is as in Lemma E-1, identifies with the value
function v if and only if the problem data is such that the inequality

γ(µ+ rκ) ≥ (r + γ̺)wc −
σ2λ2r(1 + γ)

2(r + q)
H(wc) (E.23)

holds true, where H is defined explicitly by (E.13) and wc solves (E.12) or (E.22), depending
on the case.

Proof. By construction, the function u will satisfy the HJB equation (C.1)–(C.2) in The-
orem C-1 if and only if

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ ≤ 0 for all w ∈ ]0, wc[. (E.24)

Since u satisfies the ODE (E.3), we can see that (E.24) holds true if and only if

−wu′(w) + u(w) − (1 + γ)u(w̄) + κ ≤ 0 for all w ∈ ]0, wc[.

Furthermore, the concavity of u and (E.5) imply that this inequality is equivalent to

u(wc) ≤ −wc + (1 + γ)u(w̄)− κ, (E.25)

which, in view of (E.7), is equivalent to

wc ≥
µ+ rκ− r(1 + γ)u(w̄)

̺− r
. (E.26)

Using the identities

u(w̄) = u(0) + κ = A+
µ+ q

[

(1 + γ)u(w̄)− κ]

r + q
+ κ

to derive an expression for u(w̄), and substituting for A using (E.10) and the definition of
H in (E.13), we calculate

u(w̄) =
r + q

r − qγ
A+

µ+ rκ

r − qγ

=
σ2λ2

2(r − qγ)
H(wc)−

̺+ q

r − qγ
+
µ+ rκ

r − qγ

(note that this result is valid in the context of either Lemma E-1 or Lemma E-2). It is then
a matter of simple algebraic manipulation to derive the equivalence of (E.26) and (E.23).

In view of the results derived in Lemmas E-1 and E-2, we conclude that u satisfies all
of the requirements of Theorem C-1, and therefore u = v, if and only if the problem’s
parameters are such that (E.23) holds true.
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E.2 Proof of Proposition 2

Apart from (i) and (iii), all claims follow immediately from Lemmas E-1 and E-2. To prove
statement (i), we first recall that the set of all permissible parameter values is

{

(r, ̺, µ, σ, q, γ, λ, κ, w̄) ∈ R9 | r, ̺, σ, q, γ, κ > 0, λ ∈ (0, 1],

̺ > r > qγ and
γµ

r
> κ+ (1 + γ)w̄

}

(see conditions (1)–(3)). We next fix any values of r, ̺, σ, q, γ, κ > 0 and λ ∈ (0, 1] such that
̺ > r > qγ, and we note that these determine the value of w̄† = w̄†

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

defined
in Lemma E-1 (see (E.14)). Furthermore, we consider the inequality

γµ

r
> κ+ (1 + γ)w̄ (E.27)

(see condition (3)), as well as the inequality

γµ

r
≥ ℓ(w̄), (E.28)

where

ℓ(w̄) = ℓ(w̄; r, ̺, σ, q, γ, λ, κ)

= κ+ (1 + γ)w̄ +
(̺− r)γ

r
wc

+ (1 + γ)(wc − w̄)−
σ2λ2r(1 + γ)

2(r + q)

[

H(wc) +
2κ(r + q)

σ2λ2

]

,

which is equivalent to (E.23) (recall that wc = wc

(

w̄, ̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

). In view of Lemma E-3,
the result will follow if we show that the set of values of µ, w̄ > 0 for which (E.27)–(E.28)
both hold true contains an open subset of R2. To this end, we use (E.14) and the identity
wc

(

w̄†,
̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

= w̄† (see (E.15)) to calculate

ℓ(w̄†) = κ+ (1 + γ)w̄† +
(̺− r)γ

r
w̄†. (E.29)

The continuity of the functions H and wc

(

·, ̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

implies that there exists ε1 ∈
]0, w̄†] such that

ℓ(w̄) < ℓ(w̄†) + 1 for all w̄ ∈ ]w̄† − ε1, w̄† + ε1[. (E.30)

If we define ε = ε1 ∧ (1 + γ)−1, then

κ+ (1 + γ)w̄ < κ+ (1 + γ)w̄† + (1 + γ)ε

≤ κ+ (1 + γ)w̄† + 1

< ℓ(w̄†) + 1 for all w̄ ∈ ]w̄† − ε, w̄† + ε[.
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It follows that, given any point (µ, w̄) in the open set
]

r
(

ℓ(w̄†)+1
)

/γ,∞
[

× ]w̄†− ε, w̄†+ ε[,
the inequalities (E.27)–(E.28) both hold true, and the proof of statement (iii) is complete.

Finally, statement (iii) follows immediately once we combine (E.14) and (E.15) in
Lemma E-1 with the claim associated with (E.23) in Lemma E-3. In particular, we note
for future reference that, if w̄ = w̄†, then the equivalence of (E.23) and (E.25) imply that

(1 + γ)u(w̄)− κ− wc − u(wc) ≥ 0 ⇔ γµ ≥ rκ+ (r + γ̺)w̄ (E.31)

and

(1 + γ)u(w̄)− κ−wc − u(wc) = 0 ⇔ γµ = rκ+ (r + γ̺)w̄. (E.32)

E.3 Proof of Proposition 3

Using p to stand for either λ or κ or q, we define

Θ(p) = (1 + γ)u(w̄; p)− κ− wc(p)− u
(

wc(p); p
)

,

where we write u(·; p) and wc(p) to stress the dependence of u and the free-boundary point
wc on p. We also use the notation

u′ =
∂u

∂w
, u′′ =

∂2u

∂w2
, up =

∂u

∂p
, u′p =

∂2u

∂p ∂w
and u′′p =

∂3u

∂p ∂w2
.

In view of the identity u′
(

wc(p); p
)

= −1, we can see that

Θ′(p) = (1 + γ)up(w̄; p)−
∂κ

∂p
−w′

c(p)−
[

w′
c(p)u

′
(

wc(p); p
)

+ up
(

wc(p); p
)]

= (1 + γ)up(w̄; p)−
∂κ

∂p
− up

(

wc(p); p
)

.

If we fix any permissible values r0, ̺0, µ0, σ0, q0, γ0, λ0, κ0, w̄0 of the parameters r, ̺, µ,
σ, q, γ, λ, κ, w̄ such that

w̄0 = w̄†

(

̺0 + q0
σ20λ

2
0

,
r0 + q0
σ20λ

2
0

, κ0

)

and γ0µ0 = r0κ0 + (r0 + γ0̺0)w̄0,

then we can see that this calculation and the identity wc(p0) = w̄0 (see (E.15) in Lemma E-
1) imply that

Θ′(p0) = γup(w̄0; p0)−
∂κ

∂p
. (E.33)

Furthermore, we can see that (E.32) implies that

Θ(p0) = 0. (E.34)

To proceed further, we recall that the C2 function u satisfies the ODE (E.3) in ]0, wc[,
as well as the boundary conditions

u(0) = u(w̄)− κ and u′(wc) = −1. (E.35)
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Differentiating with respect to λ, we can see that uλ satisfies the ODE

1

2
σ2λ2u′′λ(w) + (̺+ q)wu′λ(w) − (r + q)uλ(w) + σ2λu′′(w) + q(1 + γ)uλ(w̄) = 0

in ]0, wc[, with boundary conditions

uλ(0) = uλ(w̄) and u′λ(wc) = 0.

In view of these expressions, a Feynman-Kac type of formula implies that

uλ(w) = σ2λE

[∫ τ

0
e−(r+q)tu′′(W̃t) dt

]

+ q(1 + γ)E

[∫ τ

0
e−(r+q)t dt

]

uλ(w̄) + Juλ(w̄)

= σ2λE

[
∫ τ

0
e−(r+q)tu′′(W̃t) dt

]

+

(

q(1 + γ)

r + q
(1− J) + J

)

uλ(w̄), (E.36)

where W̃ is the solution to the SDE

dW̃t = (̺+ q)W̃t dt− dCt + σλ dZt, W̃0 = w, (E.37)

with C reflecting W̃ in wc in the negative direction, τ is the first hitting time of zero by
W̃ , and

J = E

[

e−(r+q)τ
]

. (E.38)

Evaluating the left-hand side of (E.36) at w = w̄ and rearranging terms, we obtain

uλ(w̄) =
(r + q)σ2λ2

(1− J)(r − qγ)
E

[∫ τ

0
e−(r+q)tu′′(W̃t) dt

]

< 0, (E.39)

the inequality following thanks to the strict concavity of u in ]0, wc[ and the fact that
J ∈ ]0, 1[. Combining this result with (E.33)–(E.34) for p standing for λ and the equivalence
stated in (E.31), we can see that, if λ0 < 1, then Θ(λ) < 0 and (20) fails for all λ > λ0
sufficiently close to λ0.

Differentiating (E.3) and (E.35) with respect to κ, we can see that uκ satisfies the ODE

1

2
σ2λ2u′′κ(w) + (̺+ q)wu′κ(w) − (r + q)uκ(w) + q(1 + γ)uκ(w̄)− q = 0

in ]0, wc[, with boundary conditions

uκ(0) = uκ(w̄)− 1 and u′κ(wc) = 0.

It follows that

uκ(w) = q
[

(1 + γ)uκ(w̄)− 1
]

E

[∫ τ

0
e−(r+q)t dt

]

+ J
[

uκ(w̄)− 1
]

= q
[

(1 + γ)uκ(w̄)− 1
]1− J

r + q
+ J

[

uκ(w̄)− 1
]

,
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where W̃ , τ and J are as in (E.37)–(E.38). Evaluating the left-hand side of this expression
at w = w̄ and rearranging terms, we obtain

(1− J)
r − qγ

r + q
uκ(w̄) = −J −

1− J

r + q
< 0,

which implies uκ(w̄) < 0. Combining this inequality with (E.33)–(E.34) for p standing for
κ and the equivalence stated in (E.31) we can see that Θ(κ) < 0 and (20) fails for all κ > κ0
sufficiently close to κ0.

Finally, differentiating (E.3) and (E.35) with respect to q, we can see that uq satisfies
the ODE

1

2
σ2λ2u′′q(w) + (̺+ q)wu′q(w) − (r + q)uq(w)

+ q(1 + γ)uq(w̄) + (1 + γ)u(w̄)− κ+wu′(w) − u(w) = 0

in ]0, wc[, with boundary conditions

uq(0) = uq(w̄) and u′q(wc) = 0.

Using the same arguments as above, we obtain

(1− J)
r − qγ

r + q
uq(w̄) = E

[∫ τ

0
e−(r+q)tg(W̃t) dt

]

, (E.40)

where W̃ , τ and J are as in (E.37)–(E.38), and

g(w) = (1 + γ)u(w̄)− κ+ wu′(w) − u(w). (E.41)

The concavity of u implies that the function g is decreasing in w. On the other hand, the
identity u′(wc) = −1 and (E.34) imply that g(wc) = 0. Therefore, the right-hand side of
(E.40) is positive, and uq(w̄) > 0. This inequality and (E.33)–(E.34) for p standing for q,
together with the equivalence stated in (E.31) imply that Θ(q) < 0 and (20) fails for all
q < q0 sufficiently close to q0.

E.4 Proof of Proposition 4

Fix any (r, ̺, µ, σ, q, γ, λ, κ, w̄) in the interior of the set of permissible parameter values for
which the firm is of a high-growth type. Statement (i) follows immediately from (E.12),
(E.22) and the properties of the functions h(w̄, ·), ĥ(·, w̄) derived in the proofs of Lemmas E-
1 and E-2.

To establish statement (ii), we further assume that the parameters are initially such that
w̄ = w̄†

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

, so that wc = w̄ (see also Proposition 2). To establish the sensitivity
of wc with respect to λ, we consider equation (E.7) that wc satisfies, namely,

−(r + q)u(wc)− (̺+ q)wc + µ+ q
[

(1 + γ)u(w̄)− κ
]

= 0. (E.42)

Differentiating with respect to λ and using the same notation as the one introduced at the
beginning of Section E.3, we obtain

w′
c(λ) = −

(r + q)uλ(wc)− q(1 + γ)uλ(w̄)

̺− r
= −

r − qγ

̺− r
uλ(w̄) > 0,
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the second identity being true because wc = w̄ = w̄† (see also (E.14)), and the strict
inequality following from (E.39) and the permissibility conditions ̺ > r > qγ.

The sensitivity of wc with respect to σ is the same as the one with respect to λ because
wc depends on either of these two parameters via the product σλ.

To establish the sensitivity of wc with respect to q and complete the proof, we differen-
tiate (E.42) with respect to q to obtain

(̺− r)w′
c(q) = −

(

(r + q)uq(wc)− q(1 + γ)uq(w̄)−
[

(1 + γ)u(w̄)− κ− wc − u(wc)
]

)

= −
(

(r − qγ)uq(w̄)−
[

(1 + γ)u(w̄)− κ− wc − u(wc)
]

)

,

where the second identity follows from the fact that wc = w̄ = w̄†. Therefore,

w′
c(q) = −

(r − qγ)uq(w̄)− g(wc)

̺− r
,

where g is defined by (E.41). Combining the fact that g is decreasing in w, which follows
from the concavity of u, with (E.40) and the definition (E.38) of J , we can see that

(r − qγ)uq(w̄) >
r + q

1− J
E

[
∫ τ

0
e−(r+q)tg(wc) dt

]

= g(wc),

and the desired inequality w′
c(q) < 0 follows.

E.5 The “No-Growth” Case

We close this section by considering the “no-growth” configuration that arises from the
verification Theorem C-1 when wg = 0 because its analysis is effectively identical to the one
we have developed above. In this case, the value function v should identify with a solution
u to the HJB equation

max

{

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ, −u′(w)− 1

}

= 0 (E.43)

that satisfies the boundary condition

u(0) = u(w̄)− κ. (E.44)

The solution to this HJB equation can be constructed in the same way as the solution to
the HJB equation (E.1)–(E.2) that we derived in Section E.1. This solution will satisfy the
HJB equation (C.1)–(C.2) in Theorem C-1 if and only if

−wu′(w) + u(w) − (1 + γ)u(w̄) + κ ≥ 0 for all w ∈ ]0, wc[. (E.45)

The concavity of u implies that this inequality is satisfied if and only if it is true for w = 0.
However, the fact that limw↓0

∣

∣u′(w)
∣

∣ < ∞ and the boundary condition (E.44) imply that,
if the solution to (E.43)–(E.44) is such that (E.45) holds, then u(w̄) ≤ 0.
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F The Low-Growth Case

In this appendix, we consider the case arising from the verification Theorem C-1 when
0 < wg < wc. In this context, we address the problem of constructing a solution to the
HJB equation (C.1)–(C.2) such that

wu′(w) − u(w) + (1 + γ)u(w̄)− κ

{

> 0, if w ∈ [0, wg[

< 0, if w ∈ ]wg, wc]

}

. (F.1)

To this end, we look for a concave C2 function u : R+ → R and for strictly positive
free-boundary points wg < wc such that u satisfies the ODE

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w) − (r + q)u(w) + µ+ q

[

(1 + γ)u(w̄)− κ
]

= 0 (F.2)

in ]0, wg[, the ODE

1

2
σ2λ2u′′(w) + ̺wu′(w) − ru(w) + µ = 0 (F.3)

in ]wg, wc[, is given by u(w) = u(wc)− (w−wc) for w > wc, and satisfies the Wentzel-type
boundary condition

u(0) = u(w̄)− κ. (F.4)

F.1 Analysis of the Free-Boundary Problem

If it exists, then the solution to the free-boundary problem (F.2)–(F.4) is of the form

u(w) =











A1ϕ1(w) +B1ψ1(w) +
µ
r+q +

q
r+qVg, if w ∈ [0, wg]

A2ϕ2(w) +B2ψ2(w) +
µ
r
, if w ∈ ]wg, wc]

u(wc)− (w −wc), if w ∈ ]wc,∞[











, (F.5)

where

Vg = (1 + γ)u(w̄)− κ, (F.6)

for some constants A1, B1, A2, B2 ∈ R, where ϕ1 and ψ1 identify with the functions ϕ and
ψ in Appendix D for ζ = ̺+ q and δ = r + q, while ϕ2 and ψ2 identify with the functions
ϕ and ψ in Appendix D for ζ = ̺ and δ = r.

To determine the four parameters A1, B1, A2, B2 and the two free-boundary points wg,
wc, we note that C1 continuity of u at wg implies

u(wg−) ≡ A1ϕ1(wg) +B1ψ1(wg) +
µ

r + q
+

q

r + q
Vg

= A2ϕ2(wg) +B2ψ2(wg) +
µ

r
≡ u(wg+) (F.7)
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and

u′(wg−) ≡ A1ϕ
′
1(wg) +B1ψ

′
1(wg) = A2ϕ

′
2(wg) +B2ψ

′
2(wg) ≡ u′(wg+). (F.8)

Furthermore, C2 continuity of u at wg and the fact that u satisfies (F.2)–(F.3) imply that

wgu
′(wg)− u(wg) + Vg = 0. (F.9)

This equation is equivalent to u′(wg) =
[

u(wg)− Vg
]

/wg, and can therefore be viewed as a
“tangency condition” at wg. C

2 continuity of u at wc gives rise to the equations

u′(wc−) ≡ A2ϕ
′
2(wc) +B2ψ

′
2(wc) = −1 ≡ u′(wc+) (F.10)

and

u′′(wc−) ≡ A2ϕ
′′
2(wc) +B2ψ

′′
2 (wc) = 0 ≡ u′′(wc+). (F.11)

For future reference, we observe that, given any point wc > 0, the solution to (F.3) satisfying
(F.10)–(F.11) is such that

−̺wc − ru(wc) + µ = 0. (F.12)

Finally, the boundary condition (F.4) implies that

u(0) ≡ A1 +
µ

r + q
+

q

r + q
Vg = u(w̄)− κ (F.13)

(see also (D.7) and (D.11)).
Using the fact that ϕ2, ψ2 satisfy (D.9) and (D.12) in Appendix D for ζ = ̺ and δ = r,

we can see that the equations (F.10)–(F.11) are equivalent to

A2 ≡ A2(wc) = exp
( ̺

σ2λ2
w2
c

) [

ψ2(wc)−
̺

r
wcψ

′
2(wc)

]

=
σ2λ2

2r
exp

( ̺

σ2λ2
w2
c

)

ψ′′
2 (wc) < 0 (F.14)

and

B2 ≡ B2(wc) = − exp
( ̺

σ2λ2
w2
c

) [

ϕ2(wc)−
̺

r
wcϕ

′
2(wc)

]

= −
σ2λ2

2r
exp

( ̺

σ2λ2
w2
c

)

ϕ′′
2(wc) < 0, (F.15)

the inequalities following thanks to the results in Lemma D-1. Also, we can verify that
(F.7)–(F.8) are equivalent to

A1 = Q1(wg, wc)−
q

r + q
exp

(

̺+ q

σ2λ2
w2
g

)

ψ′
1(wg)Vg (F.16)
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and

B1 = Q2(wg, wc) +
q

r + q
exp

(

̺+ q

σ2λ2
w2
g

)

ϕ′
1(wg)Vg, (F.17)

where

Q1(wg, wc) =
σ2λ2

2r
exp

(

̺+ q

σ2λ2
w2
g

)

exp
( ̺

σ2λ2
w2
c

)

×

(

[

ϕ2(wg)ψ
′
1(wg)− ϕ′

2(wg)ψ1(wg)
]

ψ′′
2 (wc)

+
[

ψ1(wg)ψ
′
2(wg)− ψ′

1(wg)ψ2(wg)
]

ϕ′′
2(wc)

)

+
µq

r(r + q)
exp

(

̺+ q

σ2λ2
w2
g

)

ψ′
1(wg) (F.18)

and

Q2(wg, wc) =
σ2λ2

2r
exp

(

̺+ q

σ2λ2
w2
g

)

exp
( ̺

σ2λ2
w2
c

)

×

(

[

ϕ1(wg)ϕ
′
2(wg)− ϕ′

1(wg)ϕ2(wg)
]

ψ′′
2 (wc)

−
[

ϕ1(wg)ψ
′
2(wg)− ϕ′

1(wg)ψ2(wg)
]

ϕ′′
2(wc)

)

−
µq

r(r + q)
exp

(

̺+ q

σ2λ2
w2
g

)

ϕ′
1(wg). (F.19)

The tangency condition (F.9) gives rise to the equation

lim
w↓wg

[

u(w) − wu′(w)
]

≡ A2

[

ϕ2(wg)−wgϕ
′
2(wg)

]

+B2

[

ψ2(wg)− wgψ
′
2(wg)

]

= Vg −
µ

r
.

Substituting for A2 and B2 from (F.14)–(F.15), we obtain the identity

σ2λ2

2r
exp

( ̺

σ2λ2
w2
c

)

(

[

ϕ2(wg)− wgϕ
′
2(wg)

]

ψ′′
2 (wc)

−
[

ψ2(wg)− wgψ
′
2(wg)

]

ϕ′′
2(wc)

)

= Vg −
µ

r
. (F.20)

On the other hand, the boundary condition (F.13), combined with (F.6) and (F.16), yields
the equation

Q1(wg, wc) = −
µ

r + q
−

γκ

1 + γ
+

1

r + q

[

q exp

(

̺+ q

σ2λ2
w2
g

)

ψ′
1(wg) +

r − qγ

1 + γ

]

Vg. (F.21)
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Similarly to the high-growth case that we have studied in Appendix E, any of the
possibilities w̄ ≤ wg, wg < w̄ ≤ wc or w̄ > wc may hold true. In view of (F.5), (F.6) and
(F.16)–(F.17), the case w̄ ≤ wg is associated with the expression

Vg =
(r + q)

[

ϕ1(w̄)Q1(wg, wc) + ψ1(w̄)Q2(wg, wc) +
µ
r+q −

κ
1+γ

]

r−qγ
1+γ + q exp

(

̺+q
σ2λ2

w2
g

) [

ϕ1(w̄)ψ′
1(wg)− ψ1(w̄)ϕ′

1(wg)
] . (F.22)

In view of (F.5), (F.6) and (F.14)–(F.15), the case wg < w̄ ≤ wc is associated with the
expression

Vg = (1 + γ)
[

A2(wc)ϕ2(w̄) +B2(wc)ψ2(w̄) +
µ

r

]

− κ, (F.23)

while the case w̄ > wc is associated with the expression

Vg = (1 + γ)
[

A2(wc)ϕ2(wc) +B2(wc)ψ2(wc) +
µ

r
− (w̄ − wc)

]

− κ. (F.24)

We are thus faced with the following problem.

Problem F-0. Determine necessary and sufficient conditions on the permissible values of
the parameters r, ̺, µ, σ, q, γ, λ, κ, w̄ such that

(I) the system of equations (F.20)–(F.22) has a solution 0 < wg < wc that satisfies wg ≥ w̄;

(II) the system of equations (F.20)–(F.21), (F.23) has a solution 0 < wg < wc that satisfies
wg < w̄ ≤ wc;

(III) the system of equations (F.20)–(F.21), (F.24) has a solution 0 < wg < wc that satisfies
wc < w̄.

Problem F-0 is substantially more challenging than the one we solved in Appendix E.1.
In any of the three cases, one can substitute for Vg into (F.20)–(F.21) using (F.22), (F.23)
or (F.24), depending on the case, and end up with a highly non-linear system of two
equations for the two unknown free-boundary points wg < wc. Deriving necessary and
sufficient conditions under which each of these three systems has a solution such that w̄
is at the appropriate location is a most challenging exercise indeed. Instead of attempting
to solve this, we have opted for a less ambitious approach: we show that the low-growth
configuration can arise, namely, there exists a subset of the permissible parameter values
of full Lebesgue measure in which the HJB equation (C.1)–(C.2) has a solution satisfying
(F.1). To this end, we will need the following result.

Proposition F-1. Assume that there exists a C2 function u : R+ → R whose restriction
in [0, wc] is strictly concave that satisfies the free-boundary problem (F.2)–(F.4) for some
free-boundary points 0 < wg < wc. The following statements hold true:

(I) u is given by (F.5) for A1, B1, A2 and B2 being defined by (F.14)–(F.17).

(II) u satisfies the HJB equation (C.1)–(C.2) as well as (F.1).

(III) u identifies with the value function v. Furthermore, wc and wg identify with the
corresponding thresholds in Properties 2 and 5, respectively.
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Proof. Statement (I) follows immediately from the analysis at the beginning of this section,
while Statement (III) follows from (II) and Theorem C-1.

To establish statement (II), we first note that that (F.1) holds true thanks to the identity
(F.9) and the strict concavity of the restriction of u in ]0, wc[. We will show that u satisfies
the HJB (C.1) if we prove that the inequalities

u′(w) ≥ −1 for all w ∈ [0, wc[, (F.25)

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ ≤ 0 for all w ∈ ]0, wg[ ∪ ]wc,∞[ (F.26)

and

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w)− (r + q)u(w) + µ+ qVg ≤ 0 for all w > wg (F.27)

hold true. The inequality (F.25) follows immediately from the concavity of u and the fact
that u′(wc) = −1. To prove (F.26), we first note that, inside the interval ]0, wg[, u satisfies
the ODE (F.2), which can be rewritten

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ+ q

[

wu′(w) − u(w) + Vg
]

= 0.

In view of this identity, (F.9) and the concavity of u we can see that (F.26) holds true inside
the interval ]0, wg[. Inside the interval ]wc,∞[, (F.26) is equivalent to

−̺w − r
[

u(wc)− (w − wc)
]

+ µ ≤ 0 ⇔ −̺wc − ru(wc)− (̺− r)(w − wc) + µ ≤ 0

(see (F.5)). Using (F.12), we see that this inequality is equivalent to −(̺− r)(w−wc) ≤ 0,
which is true because ̺ > r.

To establish (F.27), we first note that the inequality is equivalent to

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ+ q

[

wu′(w) − u(w) + Vg
]

≤ 0.

Combining the fact that u satisfies the ODE (F.3) inside ]wg, wc[ with the fact that wu′(w)−
u(w) + Vg < 0 for all w ∈ ]wg, wc[ (see (F.1)), we see that (F.27) is true inside ]wg, wc[.
Finally, inside ]wc,∞[, (F.27) is equivalent to

−(̺+ q)w − (r + q)
[

u(wc)− (w − wc)
]

+ µ+ qVg ≤ 0

(see (F.5)). In view of (F.12), we see that this inequality is equivalent to

−(̺− r)(w − wc) + q
[

− wc − u(wc) + Vg
]

≤ 0,

which is true thanks to (F.1), (F.10), and the fact that ̺ > r.
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F.2 Auxiliary Problems

We now study a pair of auxiliary problems on which the analysis of our main construction
in Section F.3 relies.

Problem F-1. Given permissible values for the parameters r, ̺, µ, σ, q, λ and constants
wg, Vg, s such that

wg > 0 and 0 < Vg <
µ

r
, (F.28)

find a function u1 : [0, wg] → R that satisfies the ODE

1

2
σ2λ2u′′1(w) + (̺+ q)wu′1(w)− (r + q)u1(w) + µ+ qVg = 0, (F.29)

with boundary conditions

u1(wg) = Vg + swg and u′1(wg) = s. (F.30)

Problem F-2. Given permissible values for the parameters r, ̺, µ, σ, λ and strictly positive
constants wg, Vg, find a free-boundary point wc > wg and a function u2 : [0, wc] → R such
that u2 satisfies the ODE

1

2
σ2λ2u′′2(w) + ̺wu′2(w)− ru2(w) + µ = 0 (F.31)

and the conditions

u′2(wc) = −1, u′′2(wc) = 0 and u2(wg)− wgu
′
2(wg) = Vg. (F.32)

The next results are concerned with properties of the solutions to these problems.

Lemma F-1. Problem F-1 has a unique solution. Furthermore, if s > 0, then the function
u1 is strictly increasing and strictly concave, and u1(0) < Vg.

Proof. If it exists, the solution of Problem F-1 is of the form

u1(w) = A1ϕ1(w) +B1ψ1(w) +
µ+ qVg
r + q

, for w ∈ [0, wg].

The two boundary conditions at wg provide a system of two linear equations for A1 and
B1, which has a unique solution because its determinant is non-zero (see (D.12)). It follows
that Problem F-1 has a unique solution.

In the rest of the proof, we assume that s > 0. To show that u1 is strictly concave, we
define

ŵ = sup
{

w ∈ [0, wg[ | u
′
1(w) ≤ s

}

∨ 0 ∈ [0, wg[, (F.33)
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with the usual convention that sup ∅ = −∞. Here, the inequality ŵ < wg follows from the
boundary condition u′1(wg) = s and the observation that (F.28)–(F.30) imply that

lim
w↑wg

u′′1(wg) = −
2

σ2λ2
[

(̺− r)swg + µ− rVg
]

< 0.

In view of (F.29), the strict concavity of u1 is equivalent to the inequality

(̺+ q)w
[

u′1(w) − s
]

− (r + q)u1(w) + (̺+ q)sw + µ+ qVg > 0 (F.34)

holding true in ]0, wg[. In the next paragraph, we show that

−(r + q)u1(w) + (̺+ q)sw + µ+ qVg > 0 for all w ∈ [ŵ, wg[. (F.35)

In view of the definition (F.33) of ŵ, this inequality implies that (F.34) is true for all
w ∈ [ŵ, wg[, therefore

u′′1(w) < 0 for all w ∈ [ŵ, wg[.

This result and the fact that u′1(wg) = s imply that u′1(w) > s for all w ∈ [ŵ, wg[. It follows
that ŵ = 0, and u1 is strictly concave.

To show (F.35), we note that this is equivalent to

u1(w) <
̺+ q

r + q
sw +

µ+ qVg
r + q

for all w ∈ [ŵ, wg[.

Combining the boundary condition u1(wg) = Vg + swg with the fact that u′1(w) > s for all
w ∈ [ŵ, wg[, we can see that u1(w) < Vg + sw for all w ∈ [ŵ, wg[. It follows that a sufficient
condition for (F.35) to be true is given by

µ− rVg + (̺− r)sw > 0,

which holds true under our assumptions.
Finally, we note that the concavity of u1 and the boundary condition u′1(wg) = s > 0

imply that u1 is strictly increasing in [0, wg]. Furthermore, the concavity of u1 and (F.30)
imply that

u1(0) = u1(wg)−

∫ wg

0
u′1(w) dw < Vg + swg − s

∫ wg

0
dw = Vg.

Lemma F-2. Problem F-2 has a solution if and only if the inequality
(̺

r
− 1
)

wg <
µ

r
− Vg (F.36)

is true, in which case the solution is unique, and the following statements hold true:

(I) The function u2 is strictly concave and u2(0) < Vg. Furthermore, u2(0) > 0 if

1−
r

µ
Vg < ϕ2(wg)− wgϕ

′
2(wg). (F.37)

(II) There exists δ∗ = δ∗(r, ̺, σ, λ,wg) > 0 such that

u′2(wg) > 0 ⇔
µ

r
− Vg > δ∗. (F.38)
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Proof. By inspection, if Problem F-2 has a solution, then it is of the form

u2(w) = A2ϕ2(w) +B2ψ2(w) +
µ

r
, for w ∈ [0, wc].

The two boundary conditions at wc imply that A2 and B2 are given by (F.14)–(F.15).
Furthermore, the tangency condition u2(wg)−wgu

′
2(wg) = Vg implies that, if it exists, the

free-boundary point wc should satisfy (F.20), namely,

ℓ(wc) = Vg −
µ

r
, (F.39)

where

ℓ(w) ≡ ℓ(w; r, ̺, σ, λ,wg) :=
σ2λ2

2r
exp

( ̺

σ2λ2
w2
)

(

[

ϕ2(wg)− wgϕ
′
2(wg)

]

ψ′′
2 (w)

−
[

ψ2(wg)− wgψ
′
2(wg)

]

ϕ′′
2(w)

)

.

Differentiating the function ℓ and using the ODEs satisfied by ϕ2, ψ2 and their first deriva-
tives, we obtain

ℓ′(w) = −
̺− r

r
exp

( ̺

σ2λ2
w2
)

(

(

ϕ2(wg)− wgϕ
′
2(wg)

)

ψ′
2(w)

−
(

ψ2(wg)− wgψ
′
2(wg)

)

ϕ′
2(w)

)

and

ℓ′′(w) = −
2(̺− r)

σ2λ2
exp

( ̺

σ2λ2
w2
)

(

(

ϕ2(wg)− wgϕ
′
2(wg)

)

ψ2(w)

−
(

ψ2(wg)− wgψ
′
2(wg)

)

ϕ2(w)

)

.

An inspection of these expressions reveals that

ℓ(w) < 0 and ℓ′(w) < 0 for all w > 0, (F.40)

thanks to the inequalities established in Lemma D-1. Furthermore, the inequalities in
Lemma D-1 imply that limw→∞ ℓ′′(w) < 0, which, combined with (F.40), implies that
limw→∞ ℓ(w) = −∞. It follows that (F.39) has a solution wc > wg if and only if ℓ(wg) >
Vg −

µ
r
. This inequality is equivalent to (F.36) thanks to the calculations

ℓ(wg) = −
̺− r

r
wg exp

( ̺

σ2λ2
w2
g

)

[

ϕ2(wg)ψ
′
2(wg)− ϕ′

2(wg)ψ2(wg)
]

= −
̺− r

r
wg,

where we have used the ODE satisfied by ϕ2, ψ2 for the first identity, and (D.12) for the
second identity.

To proceed further, we assume that Problem F-2 has a solution, namely, (F.36) holds
true. To establish the strict concavity of u2, we define

w̃ = sup
{

w ∈ [0, wc[ | u
′
2(w) ≤ −1

}

∨ 0 ∈ [0, wc[, (F.41)
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with the usual convention that sup ∅ = −∞. The inequality w̃ < wc stated here follows
immediately once we combine the boundary conditions u′2(wc) = −1 and u′′2(wc) = 0 with
the observation that limw↑wc

u′′′2 (w) > 0, which is true because u′2 satisfies the ODE

1

2
σ2λ2u′′′2 (w) + ̺wu′′2(w) + ̺u′2(w) = 0

in ]0, wc[. The fact that u2 satisfies the ODE (F.31) in ]0, wc[ also implies that

1

2
σ2λ2u′′2(w) + ̺w

[

u′2(w) + 1
]

+ F (w) = 0 (F.42)

in ]0, wc[, where

F (w) = −̺w − ru2(w) + µ.

In view of the assumption that ̺ > r (see condition (1)) and the definition of w̃, we can see
that

F ′(w) = −r
[

u′2(w) + 1
]

− (̺− r) < 0 for all w ∈ [w̃, wc],

which, combined with (F.12), implies that F (w) > 0 for all w ∈ [w̃, wc[. This observation,
the definition (F.41) of w̃, and (F.42) imply that

u′′2(w) < 0 for all w ∈ [w̃, wc[. (F.43)

This result and the boundary condition u′2(wc) = −1 imply that u′2(w) > −1 for all w ∈
[w̃, wc[. Combining this inequality with the definition of w̃ and the continuity of u′2, we can
see that w̃ = 0. In view of (F.43), it follows that u2 is strictly concave on ]0, wc[.

To complete the proof of statement (I), we first note that the concavity of u2 and (F.32)
imply that

u2(0) = u2(wg)−

∫ wg

0
u′2(w) dw < Vg + wgu

′
2(wg)− u′2(wg)

∫ wg

0
dw = Vg.

We also note that, in view of (F.14) and the definition of the function ℓ, (F.39) is equivalent
to

A2

(

ϕ2(wg)− wgϕ
′
2(wg)−

[

ψ2(wg)− wgψ
′
2(wg)

]ϕ′′
2(wc)

ψ′′
2 (wc)

)

= Vg −
µ

r
.

Therefore

u2(0) = A2 +
µ

r
=



1−
1− rVg

µ

ϕ2(wg)− wgϕ′
2(wg)−

[

ψ2(wg)− wgψ′
2(wg)

]ϕ′′
2 (wc)

ψ′′
2 (wc)





µ

r

(see (D.7) and (D.11)). In view of (D.14)–(D.18) in Lemma D-1, we can see that

0 < ϕ2(wg)− wgϕ
′
2(wg) < ϕ2(wg)− wgϕ

′
2(wg)−

[

ψ2(wg)−wgψ
′
2(wg)

]ϕ′′
2(wc)

ψ′′
2 (wc)

,
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and the sufficient condition (F.37) ensures that the inequality u2(0) > 0 holds true.
To complete the proof, we still need to establish (II). To this end, we note that the

expressions for A2, B2 given by (F.14)–(F.15) and the inequalities (D.4), (D.15) and (D.17)
yield

u′2(wg) ≡ A2(wc)ϕ
′
2(wg) +B2(wc)ψ

′
2(wg) > 0 ⇔ ψ′′

2 (wc)ϕ
′
2(wg)− ϕ′′

2(wc)ψ
′
2(wg) > 0

⇔
ψ′′
2 (wc)

ϕ′′
2(wc)

<
ψ′
2(wg)

ϕ′(wg)
. (F.44)

In view of (D.4)–(D.5) and (D.18), we can see that there exists a unique point w∗
c =

w∗
c (r, ̺, σ, λ,wg) > 0 such that

ψ′′
2(w

∗
c )

ϕ′′
2(w

∗
c )

=
ψ′
2(wg)

ϕ′
2(wg)

and the inequality (F.44) is satisfied if and only if wc > w∗
c . Furthermore, an inspection

of (F.39)–(F.40) reveals that wc > w∗
c if and only if Vg −

µ
r
< ℓ(w∗

c ). By construction, the
point δ∗ := −ℓ(w∗

c ) > 0 is determined uniquely by r, ̺, σ, λ and wg. In particular, it does
not depend on µ or Vg.

Lemma F-3. Fix any permissible values for the parameters r, ̺, µ, σ, q, λ, and let wg,
Vg be strictly positive constants such that (F.36) and (F.38) both hold true, namely,

max
{

(̺− r)wg, rδ
∗
}

< µ− rVg,

where δ∗ = δ∗(r, ̺, σ, λ,wg) > 0 is as in Lemma F-2.(II). Given the solution wc and u2 to
Problem F-2, if u1 is the solution to Problem F-1 for s = u′2(wg) > 0 and we define

u(w) =











u1(w), if w ∈ [0, wg[

u2(w), if w ∈ [wg, wc]

u2(wc)− (w −wc), if w > wc











, (F.45)

then u is C2, strictly increasing in [0, wg], strictly concave in [0, wc], and such that u(0) <
Vg. Furthermore, if there exists γ, κ and w̄ such that

u(w̄)− κ = u(0), (F.46)

(1 + γ)u(w̄)− κ = Vg, (F.47)

then u is a solution to the free-boundary problem (F.2)–(F.4) for the given values of the
parameters r, ̺, µ, σ, q, γ, λ, κ, w̄.

Proof. In view of (F.29)–(F.31), the C2 continuity of u at wg follows immediately from the
fact that s = u′2(wg). The results derived in Lemmas F-1 and F-2 imply the strict concavity
of u in [0, wc] as well as the facts that u is strictly increasing on 0, wg] and the inequality
u(0) < Vg. Finally, it is immediate to verify that u satisfies (F.2)–(F.4) if (F.46)–(F.47)
hold true.
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Remark F-1. Fix any permissible values for the parameters r, ̺, µ, σ, λ, let wg, Vg be
strictly positive constants such that (F.36) holds true, and let u2 be the corresponding
solution to Problem F-2. Also, let u1(·; q) be the solution to Problem F-1 for the same
parameter values and for s = u′2(wg), parametrised by q > 0. In view of the ODEs (F.29),
(F.31) that u1, u2 satisfy and the identities

u1(wg) = u2(wg) and u′1(wg) = u′2(wg),

we can see that the function q 7→ u1(0; q) is continuous and limq↓0 u1(0; q) = u2(0). It
follows that, given any ε > 0, there exists q∗(ε) = q∗(ε; r, ̺, µ, σ, λ,wg , Vg) > 0 such that

u1(0; q) ∈ ]u2(0)− ε, u2(0) + ε[ for all q ∈ ]0, q∗(ε)[.

F.3 Proof of Proposition 5

In view of Proposition F-1, we need to show that the set of permissible parameter values
for which the free-boundary problem (F.2)–(F.4) has a C2 strictly concave solution has
non-empty interior in R9. To prove that this is indeed the case, we rely on Lemma F-3.
Our constructive argument proceeds in two steps.

Step 1. We fix any

̺ > r > 0, σ > 0, λ ∈ ]0, 1] and wg > 0.

Also, given any

ξ ∈ ]0, 1[ such that ξ < ϕ2(wg)− wgϕ
′
2(wg)

(see (D.14)–(D.15)), we fix any µ such that

µ > max

{

(̺− r)wg

ξ
,
rδ∗

ξ

}

> 0,

where δ∗ = δ∗(r, ̺, σ, λ,wg) > 0 is as in Lemma F-2, and we define

Vg = (1− ξ)
µ

r
> 0.

For such choices of parameter values, Lemma F-2 implies that the solution u2 to Problem F-
2 exists, is unique, and satisfies

0 < u2(0) < Vg and u′2(wg) > 0.

Furthermore, we fix any ε ∈ ]0, u2(0)[, any q such that

0 < q < min

{

q∗(ε), r
u2(0)− ε

Vg − u2(0) + ε

}

, (F.48)
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where q∗(ε) > 0 is as in Remark F-1, and we let u1 be the unique corresponding solution
to Problem F-1 for s = u′2(wg) > 0. In view of Lemma F-3 and Remark F-1, we can see
that, for such choices,

the function u defined by (F.45) is C2,

strictly increasing in [0, wg], strictly concave in [0, wc], (F.49)

and such that u(0) ∈ ]0, Vg[ and u(0) ∈ ]u2(0)− ε, u2(0) + ε[.

Step 2. Given parameter values as in the previous step, the function u defined by (F.45)
will satisfy (F.46)–(F.47) and provide a solution to the free-boundary problem (F.2)–(F.4)
if

κ = u(w̄)− u(0) and γ =
Vg − u(0)

u(w̄)
. (F.50)

The analysis of the previous step and the continuity of all functions involved in it imply
that there exists an open subset of R8 such that (F.49) holds true for every choice of
(r, ̺, µ, σ, q, λ, wg , Vg) in this set. In view of this observation, the construction will be
complete if we show that there exists a continuous function w̄∗ mapping this set into ]0, µ

r
[

such that the parameters κ, γ defined by (F.50) are strictly positive and Conditions (2)
and (3), which are equivalent to

κ+ w̄
µ
r
− w̄

≡
u(w̄)− u(0) + w̄

µ
r
− w̄

<
Vg − u(0)

u(w̄)
≡ γ <

r

q
(F.51)

in the present context, are satisfied for all w̄ ∈ ]0, w̄∗[.
Since u is strictly increasing in [0, wg], the strict positivity of κ defined in (F.50) follows

immediately as long as w̄ < wg. On the other hand, given any w̄ ∈ ]0, wg[, the strict
positivity of γ defined in (F.50) follows from the inequalities u(0) < Vg and u(w̄) > u(0) > 0
(see (F.49)). We therefore need to determine w̄∗ ∈

]

0,min{wg,
µ
r
}
[

such that (F.51) holds
true for all w̄ ∈ ]0, w̄∗[. To this end, we note that the second inequality in (F.51) follows
from the inequalities

Vg − u(0)

u(w̄)
<
Vg − u(0)

u(0)
<
Vg − u2(0) + ε

u2(0)− ε
<
r

q
,

which hold true for all w̄ < wg thanks to (F.48) and (F.49). Finally, the existence of the
required w̄∗ ∈

]

0,min{wg,
µ
r
}
[

follows from the fact that the first inequality in (F.51) holds
true for w̄ = 0 and the continuity of u.
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G Data Sources and Variable Construction

Data Sources. Our sample relies on information on CEO turnover and CEO compensation
as reported in the widely used Standard and Poors ExecuComp database from January
1992 to December 2013. Accounting information comes from the Compustat Industrial
Annual files, and stock price and stock return information comes from the monthly CRSP
tapes. The dataset is at annual frequency (on a calendar year basis), although our measure
of past performance is constructed using stock return data at monthly frequency.

CEO Episodes and Turnover. The starting point of the construction of the data set is to
identify CEO episodes, which track the tenure of a given manager as CEO of a given firm.
Using the information available in ExecuComp, we define the first year of a CEO episode
as the first year in which the CEO is reported as being in charge of the firm. The variable
TenureYear is set at 1 in the year of his appointment and is incremented for each calendar
year he remains in office. A turnover event is recorded in the year that ExecuComp reports
the CEO leaves office. In cases where ExecuComp does not report a date leaving office but a
new CEO is reported for the same firm in a subsequent year, a turnover event is recorded in
the last year of the old CEO’s reported tenure. The variable Turnover is a binary variable
which equals 1 for a CEO episode in the year of a turnover event and zero otherwise. The
variable TotTenure equals the total number of years the CEO runs the firm.

Compensation. We define the variable TotPay as the total annual compensation as recorded
in the ExecuComp variable tdc1. This includes salary, cash bonus, retirement benefits,
stock, and stock options in the year they are awarded.

Average Q and Growth-Related Proxies. For a given CEO episode, the variable IndQInit is
equal to the arithmetic mean of the ‘average Q’ of all firms in the same 4-digit SIC industry
group in the year before the CEO was appointed. Average Q is defined as the ratio of the
market value of assets divided by the book value of assets (at). The market value of assets
is equal to total assets (at), plus the product of common stock holdings (csho) times the
closing stock price at the end of the fiscal year (prcc c), minus the book value of common
equity (ceq). Consistent with Almeida and Campello (2007), we set as missing those values
of Q above 10. In constructing the mean industry average Q, we consider the SIC industry
definition as reported in Compustat. Our proxy for the arrival of a growth opportunity,
RatioQ, is equal to the ratio of the mean industry average Q in a given year to IndQinit,
i.e., the mean industry average Q the year before the CEO was appointed.

Cumulative Abnormal Returns. In the regressions reported in the main text, we measure
past performance using 2-year annualized cumulative abnormal stock returns, which we
denote by CAR. When evaluated in year t, the variable CAR corresponds to the annualized
cumulative abnormal return between January of year t − 1 and December of year t. The
results presented in the paper are robust to lagging the performance measure by one year
(i.e., measuring annualized cumulative abnormal return between Jan of year t− 2 and Dec
of year t − 1) and to the use of shorter or longer window lengths for the measurement
of past performance. To construct our CAR variable, we use monthly return data from
CRSP to obtain abnormal returns at monthly frequency, compute compounded cumulative
abnormal returns over 24 months, and annualize. To obtain monthly abnormal returns, we
compute Dimson betas using rolling regressions over a 60-month time window, where the
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explanatory variables in the regressions include the current, lagged and forward values of
the return on the market portfolio proxied by the CRSP value-weighted index.

Other Controls. The variable lnAssets equals the logarithm of the total assets of the firm
as reported in Compustat (at). The variable ROA, or return on assets, equals the ratio of
earnings (ib) over total assets (at) as reported in Compustat. All variables are winsorized
at the 1% level.

Compensation Duration. The variable PayDuration is computed according to the duration
formula (25) displayed in the main text. The sample of CEO episodes for which this
variable is computed comprises: (i) all completed episodes for which we observe annual
compensation from year 1 of the CEO’s tenure until he leaves post; and (ii) episodes in
which the CEO is still in office by the end of our sample period but has been managing
the firm for at least 15 years, with no interruption in reported compensation. The results
presented in Section 4.3 of the paper are qualitatively unaffected when the latter group of
episodes is removed from the sample.
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