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1 Introduction

During the last years, there has been a revived interest in the theory of
dynamic contracting3. However, although most of the research incorporates
some form of limited commitment/enforcement, little has been done in terms
of extending the notion of commitment per se. In particular, there is no rea-
son to believe that (the value of) the outside option is constant across the
history of observables. For example, it is unrealistic to treat the reservation
utility of a CEO as fixed regardless of the situation in his/her firm, indus-
try, or the economy as a whole. The dependence could come through many
channels- externalities, different types of agents, a certain structure of beliefs,
but more importantly, it can significantly influence the nature of the relation-
ship and the form of the optimal contract. It would be interesting to see how
the agent is actually compensated for variability in the value of his/her out-
side options. When would his/her participation constraint bind? How is the
agent’s wealth affected in the short and the long run? In fact, would there
be a limiting distribution and how would it depend on initial conditions?
Such questions can only be analyzed in a generalized framework allowing
for history-dependent reservation utilities. Moreover, extending the notion
of commitment can bring some important insights into various contractual
problems. For example, in order to address the wide use of broad-based stock
option plans, Oyer (2004) builds a simple two-period model where adjusting
compensation is costly and employee’s outside opportunities are correlated
with the firm’s performance.

The current paper generalizes the notion of commitment by defining the
outside options on the history observed in a dynamic contractual setting. I
prove existence and obtain the first in the literature characterization of such
an environment. The characterization is very general in terms of assumptions
and, more importantly, is fully recursive. Its convergence properties make
it perfect for computing the optimal contract for a general class of dynamic
hidden action models.

I consider a moral hazard problem in an infinitely repeated principal-
agent interaction while allowing the reservation utilities of both parties to
vary across the history of observables. More precisely, to keep the model

3See, for example, Fernandes and Phelan (2000), Ligon, Thomas and Worrall (2000),
Wang (2000), Phelan and Stacchetti (2001), Sleet and Yeltekin (2001), Ligon, Thomas and
Worrall (2002), Ray (2002), Thomas and Worrall (2002), Doepke and Townsend (2004),
Jarque (2005), Abraham and Pavoni (2008).
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tractable, the reservation utilities are assumed to depend on some finite
truncation of the publicly observed history. The rest of the model is standard
in the sense that the principal wants to implement some sequence of actions
which stochastically affect a variable of his/her interest, but suffers from the
fact that the actions are unobservable. For this purpose, the optimal contract
needs to provide the proper incentives for the agent to exercise the sequence
of actions suggested by the principal. The incentives, however, are restricted
by the inability of the parties to commit to a long-term relationship. It is
here where the dynamics of the reservation utilities enters the relationship by
reshaping the set of possible self-enforcing, incentive-compatible contracts.

In order to be able to characterize the optimal contract in such a setting,
I construct a reduced stationary representation of the model in line with
the dynamic insurance literature. The representation benefits from Green
(1987)- the notion of temporary incentive compatibility, Spear and Srivastava
(1987)- the recursive formulation of the problem with the agent’s expected
discounted utility taken as the state variable, and Phelan (1995)- the recur-
sive structure with limited commitment, but is closest to Wang (1997) as far
as the recursive form is concerned. Unlike Wang (1997), however, I formally
introduce limited commitment on both sides and provide a rigorous treat-
ment of its effect on the structure of the reduced computable version of the
model. A parallel research by Aseff (2004) uses a similar general formula-
tion4, but via a transformation due to Grossman and Hart (1983) constructs
a dual, cost-minimizing recursive form closer to Phelan (1995) in order to
solve for the optimal contract. Such a procedure, however, exogenously im-
poses the optimality of a certain action on every possible contingency.

After existence is proved, the general form of the model is reduced to
a more tractable, recursive form where the state is given by the agent’s
(promised) expected discounted utility. On a different dimension, the state
space includes the set of possible truncated histories in order to account for
their influence5 on the reservation utilities. This recursive formulation does
not rely on the first-order approach and is not based on Lagrange multipliers
[cf. Marcet and Marimon, (1998)]. In fact, all I need is continuity of the
momentary utilities. I first consider an auxiliary version where the participa-
tion of the principal is not guaranteed. The solution of this problem can be

4His benchmark model is a full-commitment one, but he considers limited commitment
on part of the agent as an extension.

5The relationship between the history of observables and the reservation utilities is
predetermined since the reservation utilities are exogenous to the problem.
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computed through standard dynamic programming methods once the state
space is determined. Following the approach of Abreu, Pearce and Stacchetti
(1990), the state space is shown to be the fixed point of a set operator and
can be obtained through successive iteration on this operator until conver-
gence. Given the solution of the auxiliary problem, I resort to a procedure
outlined by Rustichini (1998) in order to solve for the optimal incentive com-
patible, two-side participation guaranteed supercontract. This is achieved by
severely punishing the principal for any violation of his/her participation con-
straint. The procedure allows of recovering the subspace of agent’s expected
discounted utilities supportable by a self-enforcing incentive-compatible con-
tract.

The rest of the paper is structured as follows. Section 2 presents the
dynamic model. Section 3 derives the reduced recursive formulation. Section
4 concludes. Appendix 1 contains all the proofs.

2 Dynamic model

The model considers a moral hazard problem in an infinite horizon principal-
agent framework with limited commitment on both sides. Each period, the
principal needs the agent to implement some action that stochastically affects
a variable of principal’s interest, but suffers from the fact that the action is
observable only by the agent. Given that the variable of interest to the
principal is publicly observable, the principal may want to condition the
wage of the agent on the realization of this variable instead. However, the
issue of inducing the proper incentives is further complicated by the lack
of commitment to a long-term relationship. The commitment problem is
structured very generally in the sense that the reservation utilities are allowed
to depend on some truncation of the publicly observed history.

Consider, for example, the interaction between the firm’s shareholders
(the principal) and its CEO (the agent). The CEO may exert a different
amount of effort which on its turn randomly affects the success of the cor-
poration illustrated by its observed gross profit. Both the principal and the
agent have some outside options: the firm may close, while the agent may
quit and start working for another employer. These options are represented
by reservation utilities which may vary on the history of observables (in this
case, the history of firm’s realized gross profits).
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First, I will introduce some notation. Let Z be the set of integers with
Z++ and Z+ denoting the sets of positive and respectively nonnegative in-
tegers. Time is discrete and indexed by t ∈ Z. Let yt denote a particular
realization of the variable of interest to the principal in period t. This out-
come is realized and observed by both the principal and the agent at the end
of the period. As a matter of fact, at the beginning of period t there is a
stream of previously realized outcomes which we denote by yt−1. Given that
the end-of-period-t realization is yt, the history of outcomes at the begin-
ning of period t + 1 is simply yt =

(
yt−1, yt

)
. The set of possible outcomes

is assumed a time- and history-invariant, finite set of real numbers which is
denoted by Y . For concreteness, we assume that it consists of n > 1 distinct
elements.

There is an initial period of contracting which we normalize to 0. At
the beginning of this initial period, an outcome history of length θ ∈ Z+

is observed. Therefore, a period-0 contracting problem should be defined
on nθ initial history nodes.6 Both the principal and the agent can only
commit to short term contracts, therefore it is natural to start with a series
of single-period contracts defined on all possible contingencies stemming from
some initial node. Each such contract is history dependent and specifies an
action and a monetary transfer from the principal to the agent contingent on
the particular outcome observed at the end of the period. The timing is as
follows. A short-term contract is signed at the beginning of the period. Then,
the agent implements some action which is unobserved by the principal and
may not be the one specified in the contract. Nature observes the action and
draws a particular element of the set of possible outcomes according to some
probability distribution. The outcome is observed by both parties and the
agent receives the transfer corresponding to this particular outcome.7 Then,

6As it will become clear afterwards, history will not matter at the initial period of
contracting unless the reservation utility of either the principal or the agent is history
dependent. Since in order to keep the problem tractable, I allow the reservation utilities
to vary across a finite truncation of the observed history with length θ (Assumption 2), it
would be natural to consider the contracting problem as defined on nθ initial nodes. As
for the existence of an initial period of contracting, note that we can modify the period-
0 contracting problem [PP] so that the principal should provide the agent with a given
initial (expected discounted) utility level resulting from a previous round of long-term
contracting.

7Given the above setup, the principal’s ability to commit to a short-term contract
should be understood as an ability to commit to providing the agent with the promised
monetary transfer. Indeed, the transfer specified in the short-term contract signed at the
beginning of the period occurs at the end of the same period.
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a new period starts, a new short-term contract is signed, and so on.
Formally, at the beginning of each period t ∈ Z+, after a particular his-

tory yt−1 has been publicly observed,8 a single-period contract ct

(
yt−1

)
:=

{at

(
yt−1

)
, wt

(
yt−1, y

)
: y ∈ Y } is signed between the principal and the

agent. Hereafter, for the sake of simplicity, I will often denote such a con-
tract by ct with the clear understanding that it is defined on a particular
history yt−1. The contract specifies an action at to be implemented by the
agent. To make the analysis tractable, the action is assumed one-dimensional
and the action space is taken compact, time- and history-invariant. Formally,
at ∈ A, where A ⊂ R compact. The contract also specifies a compensation
scheme {wt (., y) : y ∈ Y } under which the agent will receive a monetary pay-
off wt (., y) in the end of the period if the (end-of-period) outcome is y for
any y ∈ Y . The space of possible wages, W , is assumed a compact, time-
and history-invariant subset of R.9 After the contract is signed, the agent
exercises action a′

t ∈ A which is not necessarily the one prescribed by the
contract. Then, outcome yt is realized and the agent receives wt (., yt). At
the beginning of period t + 1, contract ct+1 (yt) is signed and so on.

Hereafter, I will refer to any sequence of outcomes, actions, or wages as
admissible if all their elements belong to Y , A, or W , respectively.

In order to simplify the analysis, I assume that the probability distribu-
tion of the variable of interest to the principal depends only on the action
taken (earlier) in the same period10 and that each value in the admissible

8You may note that an outcome history yt−1 consists of θ elements corresponding to
the initial history observed at the beginning of period 0 and t elements from period 0 to
period t − 1.

9The compactness assumption can easily be defended by economic considerations. Con-
sider W = [w, w] ⊂ R, where w may either be zero or a higher number that corresponds
to the legally established minimum wage, while w is some finite number reflecting the
boundedness of the principal’s total wealth (the discounted sum of maximum possible
income flows). For example, if we treat y as profits, then w may be taken equal to max Y

1−βP
,

where βP is the relevant discount factor, or to a lower number reflecting restrictions on
the principal’s ability to borrow against future profits. In Morfov (2010a), a minimum
wage level is assumed and from there a theoretical upper bound on the wage is derived in
Proposition 1. In the same paper, two other possibilities are considered. The first deals
with the case where the principal can borrow up to max Y −y units of consumption, where
y is current gross profit. Then, we can take w = max Y . The second case assumes that
the principal is prohibited from borrowing, so the wage cannot exceed the current gross
profit realization. Note that we can easily extend this case to the environment described
here, by taking w = max Y and additionally requiring wt (., y) ≤ y, ∀y ∈ Y .

10While the framework can be modified to include some form of “action” persistence
[see, for example, Fernandes and Phelan (2000) and Jarque (2005)], such an extension
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set Y is reached with a strictly positive probability.

Assumption 1 For any period t ∈ Z, any admissible outcome history yt =(
yt−1, yt

)
, and any admissible action sequence at =

(
at−1, at

)
, the probability

that yt is realized given yt−1 has been observed and at has been implemented
equals π (yt, at) where π : Y × A → (0, 1) such that ∀a ∈ A,

∑
y∈Y

π (y, a) = 1

and ∀y ∈ Y , π (y, .) continuous on A.

The continuity of π in its second argument is a regularity condition which
is trivially satisfied if A is finite.

The principal’s (end-of-)period-t utility is denoted by u (wt, yt), where
u : W × Y −→ R is assumed continuous, decreasing in the agent’s wage,
and increasing in the outcome. The principal discounts the future by a
factor βP ∈ (0, 1). The agent’s (end-of-)period-t utility is given by ν (wt, at)
with ν : W ×A −→ R continuous, increasing in wage, and decreasing in the
implemented action.11 The agent discounts the future by a factor βA ∈ (0, 1).
Note that given our assumptions, the expected discounted utilities of both
the agent and the principal are bounded at any node.

As already mentioned, the agent need not necessarily implement the ac-
tion specified in the contract. Indeed, if another action brings the agent
strictly higher utility, he/she will find it profitable to deviate. Therefore,
the contract should provide the proper incentives to the agent in order for
him/her to exercise exactly the action recommended by the principal.

Limited commitment is assumed on both parts in the sense that both the
principal and the agent can commit only to short-term (single-period) con-
tracts. This assumption is intended to reflect legal issues on the enforcement

will be of little value here since the current paper aims to characterize the effect of a
generalized form of limited commitment on the optimal dynamic contract. Given that the
reservation utilities are allowed to vary across the history of observables, we have another
form of persistence which should be analyzed in isolation from potential long-term effects
coming from agent’s action choice.

11Note that we effectively prohibit the agent from borrowing or saving. While extend-
ing the model in that direction is possible, introducing such a behavior would shift the
focus to incentive-compatibility, while in the current research I seek to analyze the role of
the participation constraints in the optimal contract. Moreover, without a set of strong
assumptions justifying the first-order approach, such an extension would be very hard to
deal with on a practical level given the increase in the dimensionality of the state space
of the recursive form.
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of long-term contracts. However, at the initial period the principal can offer
a long term contract (a supercontract) that neither he/she, nor the agent
would like to renege on,12 and that would provide the necessary incentives
for the agent to exercise the sequence of actions proposed by the principal.
We will refer to this supercontract as a self-enforcing, incentive-compatible
contract and would concentrate on the one maximizing the utility of the
principal.

Regarding the issue of commitment, the reservation utilities take values
in R and are allowed to vary across the history of observables. Since it is
not practical to define reservation utilities on infinite histories, I make the
following assumption.

Assumption 2 The reservation utilities of both the principal and the agent
exogenously depend on the previous θ outcomes.

The assumption says that the reservation utilities are finite-history de-
pendent, but time independent. Note that the history dependence is trun-
cated to the realizations in the previous θ periods. This is no coincidence.
Analogously, we could have started with potentially infinite histories in pe-
riod 0, introduced finite-history dependence of different length: θP for the
principal and θA for the agent, and then considered finite truncations with
length θ := max {θP , θA} of the infinite histories observed in period 0.

Let Y θ denote the set of possible outcome streams of length θ periods, or,
alternatively, the set of possible initial histories observed at the beginning
of period 0. For concreteness, let us enumerate this set using some bijective
function l : Y θ → L, where L :=

{
1, ..., nθ

}
. Hereafter, all functions and

correspondences with domain Y θ will be considered as vectors or Cartesian
products of sets indexed by L. Moreover, we will often abuse the notation
and use l as its inverse, namely, as the initial history to which the particular
index corresponds.

Given this indexing, we will denote the reservation utilities of the princi-
pal and the agent at node yt−1 ∈ Y t × l as U l and V l respectively, ∀t ∈ Z+,
∀l ∈ L. For example, if the history observed in the previous θ periods has
been (yt−θ, ..., yt−1), the principal’s reservation utility in the current period

12That is, a self-enforcing contract extending the definition of Phelan (1995) to my
generalized notion of limited commitment.
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will be U l , where l = l (yt−θ, ..., yt−1) is the index of the particular outcome
stream.

For any l ∈ L, we will define a long-term contract (a supercontract), c :=
(a,w), where a :=

{
at

(
yt−1

)
: yt−1 ∈ l × Y t

}∞
t=0

and w := {wt

(
yt−1, yt

)
:(

yt−1, yt

)
∈ l × Y t × Y }∞t=0 are the plan of actions and respectively the

sequence of wages defined the whole tree of contingencies stemming from
an initial history l.13 The supercontract prescribes a single action at every
node, but specifies the agent’s compensation as further dependent on the
end-of-period outcome, i.e., as a function with domain Y , or alternatively,
as a vector of n elements.14 Let Vτ

(
c, yτ−1

)
and Uτ

(
c, yτ−1

)
be the expected

discounted utilities of the agent and respectively the principal at node yτ−1

given a supercontract c, i.e.:

Vτ

(
c, yτ−1

)
:=

∞∑
t=τ

βt−τ
A

∑
yt∈Y

...
∑

yτ∈Y

ν (wt, at)
t∏

i=τ

π
(
yi, ai

(
yi−1

))
,

Uτ

(
c, yτ−1

)
:=

∞∑
t=τ

βt−τ
P

∑
yt∈Y

...
∑

yτ∈Y

u (wt, yt)
t∏

i=τ

π
(
yi, ai

(
yi−1

))
.

At time 0, after a truncated history l has been observed, the principal is
solving the following problem:

[PP]

sup
c

U0 (c, l) s.t.:

aτ ∈ A, ∀nai(l) (1)

wτ (., y) ∈ W , ∀y ∈ Y , ∀nai(l) (2)

Vτ

(
a,w, yτ−1

)
≥ Vτ

(
a′, w, yτ−1

)
, ∀(a′ : ∀nai(yτ−1), a′

t ∈ A), ∀nai(l) (3)

Vτ

(
c, yτ−θ−1, l̃

)
≥ V

el, ∀nai(l) (4)

13Note that the supercontract depends on the initial history, but to ease up the expo-
sition, I suppress this dependence notationally.

14Remember that Y is finite with cardinality n.
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Uτ

(
c, yτ−θ−1, l̃

)
≥ U

el, ∀nai(l) (5)

where “∀nai(l)” should be understood as “for any node after and including
l”, that is ∀yτ−1 ∈ l × Y τ , ∀τ ∈ Z+.

This is a time-0, history-l contracting problem that mimics dynamic con-
tracting from this node on. That is, at l, the principal solves for a sequence
of future strategies on all possible contingencies, so at each node the con-
tinuation strategy needs to be self-enforcing and incentive compatible. As
in the standard model of dynamic contracting, these strategies are history-
dependent. Here, we additionally have that each decision node is character-
ized by a specific pair of reservation utilities which depend on the history of
observables. Nevertheless, as the next section shows, the problem does pos-
sess a recursive representation in the spirit of Spear and Srivastava (1987).

Constraints (1) and (2) guarantee that the action plan and respectively
the wage scheme are admissible. That is, at any node of the tree stemming
from l, the supercontract prescribes an action from A and specifies a com-
pensation scheme that maps Y to W . (3) guarantees that the contract is
incentive compatible on any node. For example, at the initial node l, it re-
quires that the action plan of the principal should make the agent weakly
better off in terms of period-0 expected discounted utility than any other se-
quence of admissible actions.15 (4) and (5) are the participation constraints
of the agent and respectively the principal which due to limited commitment
should hold at any node. These constraints guarantee the participation of
both parties at each contingency. For example, at node yτ−1 =

(
yτ−θ−1, l̃

)
,

the expected discounted utility of the agent should be no less than his/her
respective reservation utility at this node, V

el, and the expected discounted
utility of the principal should be greater or equal to U

el.
For future reference, we denote the problem above as [PP] and its supre-

mum as U∗∗
l .

The solution of [PP], if such a solution exists, would be the self-enforcing,
incentive-compatible contract that maximizes the utility of the principal at
the initial period of contracting.

Let Γyτ−1 :=
{
c : (1) − (5) hold after yτ−1

}
. This is the set of admissible,

incentive-compatible, self enforcing contracts that can be signed at node

15In our framework, we actually have that incentive compatibility on any node is equiv-
alent to initial (time-0) incentive compatibility (see Lemma 1 in the Appendix).
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yτ−1. In particular, consider Γl, the set of such contracts available at an
initial history l. We shall assume that this set is non-empty for any l ∈ L.16

Assumption 3 ∀l ∈ L, Γl 6= ∅.

3 Recursive Form

In this section, we will prove existence and construct an equivalent recursive
representation of [PP]. We start by establishing the equivalence of incen-
tive compatibility at all contingencies to Green (1987)’s temporary incentive
compatibility at all contingencies.

Proposition 1 Let (1) and (2) hold after l ∈ L. Then, (3) ⇔

∀nai (l) , Vτ

(
a, w, yτ−1

)
≥ Vτ

(
a′, w, yτ−1

)
,

∀a′ : a′
τ

(
yτ−1

)
∈ A, and ∀y ∈ Y , ∀nai

(
yτ−1, y

)
, a′

t (.) = at (.) (6)

The proposition says that constraint (3) is equivalent to requiring that
at any date τ , after any history yτ−1, there is no profitable deviation in
the current period which will make the agent strictly better off (in expected
utility terms) given that he/she fully complies to the plan in the future. The

16If the set is empty for some initial history, then there does not exists an incentive-
compatible, self-enforcing supercontract at this node. As our numerical estimates in Mor-
fov (2010a) demonstrate, this is hardly the case: in fact there is a wide interval of possible
utility promises to the agent that can be supported by a contract of such type for any initial
history node. Also note that for suitably chosen reservation utility values, the incentive
compatible contract will behave as a full-commitment one, so any violation of Assumption
3 will directly imply the non-existence of the latter. Therefore, it is more a problem of
choosing the “proper” (not too high) reservation utilities than anything else. Nevertheless,
Morfov (2010b) considers an extension that allows for permanent separations and does
not require an assumption of this sort.
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proposition allows us to focus on single-period deviations, which is the first
step towards a recursive structure.

Consider two types of supercontracts. The first, hereafter referred to as a
2P contract, is an incentive-compatible supercontract which is self-enforcing,
i.e., guarantees the participation of both the agent and the principal. The
second, hereafter referred to as an AP contract, is an incentive-compatible
supercontract which guarantees the participation of the agent, but not nec-
essarily the one of the principal.17 Note that the set of possible 2P contracts
that can be signed at node yτ−1 was already denoted by Γyτ−1 . Let ΓAP

yτ−1 be
the set of possible AP contracts that can be signed at node yτ−1. Formally,
ΓAP

yτ−1 :=
{
c : (1) − (4) hold after yτ−1

}
. Now, we are going to consider the

sets of agent’s initial utilities that can be guaranteed/supported by a 2P and
respectively an AP contract.

Let l be some initial history node. Take an arbitrary period τ and a
history yτ−1 stemming from l, i.e., yτ−1 ∈ l×Y τ . Let V 2P

τ

(
yτ−1

)
be the set

of admissible values for the expected discounted utility of the agent signing
at date τ after a history yτ−1 a 2P contract with the principal. Formally,
V 2P

τ

(
yτ−1

)
:= {V ∈ R : ∃c ∈ Γyτ−1 such that Vτ

(
c, yτ−1

)
= V }. Let us also

introduce another set, V AP
τ

(
yτ−1

)
, which gives us the possible discounted

utilities of the agent signing at date τ after a history yτ−1 an AP contract
with the principal. Formally, V AP

τ

(
yτ−1

)
:= {V ∈ R : ∃c ∈ ΓAP

yτ−1 such that
Vτ

(
c, yτ−1

)
= V }. Since every 2P contract is an AP contract, the agent’s

utilities supportable by a 2P contract will be a subset of the agent’s utilities
supportable by an AP contract. Formally, V 2P

τ

(
yτ−1

)
⊂ V AP

τ

(
yτ−1

)
for

any l ∈ L, τ ∈ Z+, and yτ−1 ∈ l × Y τ . Now, we are ready to introduce
the sets of principal’s initial utilities that can be supported by a 2P and
respectively an AP contract promising a certain initial utility to the agent.

For any V ∈ V 2P
τ

(
yτ−1

)
, let U2P

τ

(
V, yτ−1

)
be the set of possible val-

ues for the expected discounted utility of the principal signing at node yτ−1

at time τ a 2P contract that would give the agent an initial expected dis-
counted utility of V , i.e., U2P

τ

(
V, yτ−1

)
:= {U ∈ R : ∃c ∈ Γyτ−1 such that

Vτ

(
c, yτ−1

)
= V and Uτ

(
c, yτ−1

)
= U}. For any V ∈ V AP

τ

(
yτ−1

)
, let

UAP
τ

(
V, yτ−1

)
be the corresponding set (defined accordingly) in case the

principal is signing an AP contract instead.

17It may be easier to remember the abbreviations in the following way: AP=“agent
participates”; 2P= “two [...] participate”, i.e., both the agent and the principal participate.
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Then, for any V ∈ V 2P
τ

(
yτ−1

)
, we have U2P

τ

(
V, yτ−1

)
⊂ UAP

τ

(
V, yτ−1

)
,

while for V ∈ V AP
τ

(
yτ−1

)
\ V 2P

τ

(
yτ−1

)
, U2P

τ

(
V, yτ−1

)
is not defined.

Proposition 2 Let l ∈ L and i ∈ {2P, AP}. Then, for any τ ∈ Z+ and
yτ−1 ∈ Y τ × l : (a) V i

τ

(
yτ−1

)
= V i

0 (l) compact; (b) ∀V ∈ V i
τ

(
yτ−1

)
,

U i
τ

(
V, yτ−1

)
= U i

0 (V, l) compact.

Part (a) of the proposition says that the sets of possible expected dis-
counted utility values for the agent signing a 2P or AP contract are time
invariant and compact. Furthermore, the history dependence of these sets
is restricted only to the previous (as of signing) θ realizations. As part (b)
indicates, the result also applies to the set of possible expected discounted
utilities of the principal signing a 2P or AP contract guaranteeing a partic-
ular initial utility to the agent.

To ease up the notation, we will hereafter refer to these sets as V 2P (l),
V AP (l), U2P (V, l), and UAP (V, l).

Remember that U∗∗
l is the supremum of the principal’s problem [PP]. We

state the following result.

Proposition 3 (Existence of an optimal contract): For any l ∈ L, ∃cl ∈ Γl

s.t. U∗∗
l = U0 (cl, l).

The proposition establishes the existence of an optimal 2P contract. How-
ever, due to the complexity of the problem, the optimal contract cannot be
derived analytically. Nevertheless, I show that it can be characterized and
given a computable representation. In the spirit of Spear and Srivastava
(1987), this is done by constructing a recursive version of [PP] taking the
agent’s expected discounted utility as a state variable. Up to certain quali-
fications, this new formulation of the problem can be addressed by dynamic
programming routines.

I will first establish a useful result which is related to the transformation
of the dynamic principal’s problem to a series of static problems defined on
an endogenously obtained state space.

Fix l ∈ L. By Proposition 2 (b) for any V ∈ V 2P (l), U2P (V, l) is compact
and therefore, we can define U

∗
(V, l) := maxU2P (V, l) as the maximum

14



utility the principal can get by signing a 2P supercontract offering V to the
agent. Furthermore, let U∗

l := sup
V ∈V 2P (l)

U∗ (V, l).

Proposition 4 ∀l ∈ L, U∗∗
l = U∗

l = max
V ∈V 2P (l)

U∗ (V, l).

This proposition shows that the principal is indifferent between directly
maximizing his/her utility given l, or first finding the maximum utility he/she
can obtain by guaranteeing the agent a certain initial level of utility and then
maximizing over the resulting set.18

Let l+ : L × Y → L give the index of the initial history tomorrow given
the index of the initial history today and the new realization of the variable.
Consider, for example, that we are in period t. At the beginning of t, an
initial history (yt−θ, ..., yt−1) with index l has been observed. At the end of
the period, an outcome yt−1 is realized. Then, at the beginning of period
t+1, the observed initial history will be (yt−θ+1, ..., yt) and will have an index
l+ (l, yt). We will often abuse the notation and use l+ instead of l−1 (l+),
i.e., replace the initial history tomorrow by its index.

Consider the state space
{
(V, l) : V ∈ V AP (l)

}
l∈L

that matches initial
histories of outcomes with initial utility promises supportable by an AP
contract.19 Let cR(V, l) = {(a−(V, l), w+(V, l, y), V+(V, l, y)) : y ∈ Y } be a
stationary contract defined on a point (V, l) of the state space, where a− (.)
is the agent’s action in the beginning of the period, w+ (., y) is the wage the
agent will receive in the end of the period if the realization of the variable
of interest to the principal is y, ∀y ∈ Y , and V+ (., y) is the end-of-period
expected discounted utility of the agent in case of realization y, ∀y ∈ Y . Since

18Note that the original problem can be set as the principal maximizing expected dis-
counted utility given an initial truncated history l at period 0, where the maximum is
taken over a set of 2P supercontracts promising the agent an initial expected discounted
utility of Vl for any l ∈ L and Vl ∈ V 2P (l). The promise should be consistent (in a sense
that will soon become clear; see (9)) and can be considered a leftover from a (remote)
previous round of contracting. Then, the original problem is defined on {V 2P (l) : l ∈ L}
and the recursive representation will be equivalent to the one obtained here without the
need to maximize U∗ (., l) over V 2P (l). Namely, we would have U∗∗ (., l) = U∗ (., l) over
V 2P (l). Since the static form characterizing both [PP] and the problem described here
is the same, I choose to present the former because of the more involved description and
notation of the latter.

19The possible initial histories (of length θ) enter the picture because they could poten-
tially affect the reservation utility values.
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the realization of the variable in question is not known when this contract is
signed, the wage and the end-of-period utility of the agent are specified for
all possible outcomes, Y . Although the stationary contract depends on the
initial history and the particular expected discounted utility of the agent in
the beginning of the period, I will often suppress this dependence notationally
and refer to the contract simply as cR = {(a−, w+ (y) , V+ (y)) : y ∈ Y }. Let
USCBl denote the space of bounded upper semicontinuous (usc) functions
from V AP (l) to R endowed with the sup metric. Define V AP :=

{
V AP (l)

}
as the set of possible initial discounted utilities of the agent signing an AP
contract ordered by initial history. Since L is finite, this set inherits the
properties of V AP (l) established in Proposition 2 (a). Then, for any U =
{Ul} with Ul ∈ USCBl, ∀l ∈ L, define the operator T as follows. For any
V = {Vl} ∈

{
V AP

}
, T (U)(V ) :=

{
Tl (U)(Vl)

}
, where:

Tl (U)(Vl)
:= max

cR

{
∑

[
y∈Y

u (w+ (y) , y) + βP Ul+(l,y) (V+ (y))]π (y, a−)} s.t.:

a− ∈ A (7)

w+ (y) ∈ W , ∀y ∈ Y (8)

∑
y∈Y

[ν (w+ (y) , a−) + βAV+ (y)]π (y, a−) = Vl (9)

∑
y∈Y

[ν
(
w+ (y) , a′

−
)

+ βAV+ (y)]π
(
y, a′

−
)
≤ Vl, ∀a′

− ∈ A (10)

V+ (y) ∈ V AP (l+ (l, y)) , ∀y ∈ Y (11)

Notice that the maximization above is over a set of static contracts at a
particular point (Vl, l) of the state space.20 Also note that if the initial history

20This may not show up directly since I have simplified the notation by suppressing the
dependence of cR on the initial history l and the particular initial utility Vl promised to
the agent.

Notice also that {(Vl, l) : Vl ∈ V AP (l)} is endogenous to the model, so one may doubt
the usefulness of defining the operator T on an unknown state space as well as the practical
benefit of constraint (11). Further in this section, however, we will demonstrate that V AP

can be recovered from the primitives by a recursive procedure in the spirit of Abreu, Pearce
and Stacchetti (1990).
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today is l and the end-of-the-period realization is y, then the initial history
tomorrow will be l+ which in general will be different from l. Therefore, it
is important that we keep track of the initial history update and so each
Tl is applied to U , not just to Ul.21 The use of max instead of sup in the
definition of T is justified by the fact that we are maximizing an usc function
over a compact set. Constraints (7), (8), and (10) are the stationary versions
of (1), (2), and (6) respectively. In particular, (7) guarantees that the action
is admissible (i.e., an element of A), (8) guarantees that the compensation
scheme is admissible (i.e., mapping Y to W ), and (10) is temporary incentive
compatibility.22 (9) is a promise keeping constraint23 which guarantees the
agent an expected discounted utility of Vl today. It is a requirement on the
static contract that makes the principal’s initial utility promise to the agent
at node l, Vl, consistent with the future promise given the proposed action
and compensation scheme. (11) is another consistency constraint requiring
that the discounted expected utility that the agent will get next period can
be supported by an AP supercontract. Note that (11) implies that the
agent’s continuation utility should not fall below the reservation level on any
respectively updated initial history, i.e., V+ (., y) ≥ V l+(l,y), ∀y ∈ Y . In fact,
constraints (9) and (11) guarantee the dynamic consistency of the series of
static contracts generated by iterating on the operator T .

For any l ∈ L and V ∈ V AP (l), we have that UAP (V, l) is compact
by Proposition 3 (b). Then, we can define U

AP∗

(V, l) := max UAP (V, l) as
the maximum utility the principal can get by signing an AP supercontract
offering V to the agent. For any V ∈ V AP , let U

AP∗

(V ) =
{

U
AP∗

(Vl, l)
}

be the vector of these maximum utilities indexed by initial history. Next, I
will show that U

AP∗

: V AP → Rnθ

is the unique fixed point of the operator
T and can be obtained as the limit of successively iterating on T . I start
with a proposition that establishes some useful properties of U

AP∗

.

Proposition 5 For any l ∈ L, U
AP∗

(., l) is usc and bounded on V AP (l).

21Of course, if θ = 0, the reservation utilities will be constant at all nodes, so the initial
history will be immaterial for the static contract. The state space will shrink to a single
dimension; namely, the set of expected discounted utilities that can be promised to the
agent will be the same at every node. Then, the history update will prove irrelevant since
U will be defined on the one-dimensional V AP .

22Note that we have made use of (9) when stating temporary incentive compatibility as
(10). Namely, given (9) holds, temporary incentive compatibility is equivalent to (10).

23It is referred to as a re-generation constraint in Spear and Srivastava (1987).
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Note that these properties can directly be translated to U
AP∗

, say with
the sup metric over Y θ.

Proposition 6 T
(
U

AP∗ )
= U

AP∗

.

The proposition says that U
AP∗

is a fixed point of the operator T .
For the purposes of the next proposition, I introduce some additional no-

tation. Let ßl denote the space of bounded functions from V AP (l)
to R endowed with the sup metric. For any U ′, U ′′ ∈ {USCBl},
define the metric µ (U ′, U ′′) := sup

l∈L

µl (U ′, U ′′), where µl (U ′, U ′′) :=

sup
Vl∈V AP (l)

|U ′
l (Vl) − U ′′

l (Vl)|, ∀l ∈ L. Note that both suprema in the above

definition are achieved.

Proposition 7 (a) T maps ({USCBl} , µ) into itself; (b) T is a contraction
mapping with modulus βP in terms of the metric µ; (c) Let Ũ ∈ ({ßl} , µ) :
T

(
Ũ

)
= Ũ . Then, Ũ = U

AP∗

; (d) ∀U ∈ ({USCBl} , µ), µ
(
Tn (U) , U

AP∗ )
→

n→∞
0, where Tn (U) := T (Tn−1(U)) for any n ∈ Z++ with T 0 (U) := U .

This proposition shows that the fixed point of T is unique and can be
obtained as a limit of successive iterations on T . Consequently, we can use
standard dynamic programming techniques in order to solve for the optimal
AP contract.

However, what we are ultimately interested in is solving for the optimal
2P contract. For this purpose, I resort again to dynamic programming using
a method outlined by Rustichini (1998).

First, I will introduce some notation. For any l ∈ L and Vl ∈ V AP (l), let
ΓR (Vl, U, l) := {cR : (7) − (11) hold at (Vl, l) and Ul+(l,y) (V+ (y)) ≥ U l+(l,y),

∀y ∈ Y } for some function U : V AP → (R ∪ {−∞})nθ

. Additionally, let

ΛR (Vl, U, l) :=
{

ΓR (Vl, U, l) if Ul (Vl) ≥ U l

ΛR (Vl, U, l) := ∅ otherwise.
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Denote by USCBAl the space of usc, bounded from above functions
from V AP (l) to R ∪ {−∞}. Then, for any U = {Ul} with Ul ∈ USCBAl,
∀l ∈ L, define the operator T as follows. For any V ∈ V AP , T (U)(V ) :={

T l (U)(Vl)

}
, where

T l (U)(Vl)
:= max

cR∈
ΛR(Vl,U,l)

{
∑

y∈Y

[u (w+ (y) , y) + βP Ul+(l,y) (V+ (y))]π (y, a−)}

following the convention that T l (U)(Vl)
= −∞ if ΛR (Vl, U, l) = ∅.

This operator encompasses the lower bounds on the utility of the principal
in the form of additional constraints. The only difference with T is that in
case U is lower than the reservation utility of the principal today or at
any possible contingency tomorrow, T becomes −∞. The idea is that any
violation of the constraints in this stationary framework is punished severely
making the contract in question non-optimal. What remains to be shown is
that iterating on this operator will indeed lead us to the optimal dynamic
contract.

Proposition 8 T maps {USCBAl} into itself.

For any V ∈ V AP , let D0 (V ) := UAP∗
(V ) and Di+1 (V ) := T (Di),

∀i ∈ Z+. Note that by Proposition 8 and the fact that ΓR (Vl, U, l) is compact
if non-empty for any Vl ∈ V AP (l), U ∈ {USCBAl}, and l ∈ L (trivial), Di

is well defined on V AP for any i ∈ Z+.

Proposition 9 (a) {Di}∞i=1 is a weakly decreasing sequence and ∃D∞ ∈
{USCBAl} : Di (Vl, l) →

i→∞
D∞ (Vl, l), ∀Vl ∈ V AP (l), ∀l ∈ L; (b) T (D∞) =

D∞; and (c) if ∃D′ ∈ {USCBAl} : T (D′) = D′, then D′ ≤ D∞.

This proposition says that if we start iterating on the operator T taking
UAP∗

as an initial guess, we will ultimately converge (pointwise) to D∞, the
largest fixed point of T . Next, I establish the relationship between U∗ and
D∞.
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In the subsequent analysis it will be useful to extend U∗ on V AP . For
any V ∈ V AP , let Û∗ (V ) :=

{
Û∗ (Vl, l)

}
with Û∗ (Vl, l) := U∗ (Vl, l) if

Vl ∈ V 2P (l) and Û∗ (Vl, l) := −∞ otherwise.

Proposition 10 T
(
Û∗

)
= Û∗.

This proposition establishes that the extension of U∗ on V AP is a fixed
point of T . What remains to be shown is how to recover U∗ from D∞. The
next proposition gives the answer.

Proposition 11 For any V ∈ V AP , Û∗ (V ) = D∞ (V ).

The proposition provides a straight-forward method of solving for the
optimal 2P supercontract. After we have found the optimal AP contract
we take it as an initial guess and start iterating on the operator T until
convergence is reached. Note that convergence here is pointwise and is meant
to be on R ∪ {−∞}. After we have obtained the limit function D∞, we can
recover the set of possible values for the expected discounted utility of the
agent signing a 2P contract by taking the subset of the domain of D∞ on
which the limit function takes finite values. More precisely, for any l ∈ L
we can restrict ourselves only to values of D∞ (., l) above U l. Formally,
V 2P (l) :=

{
V ∈ V AP (l) : D∞ (V, l) ≥ U−θy

}
. Then, for anyV ∈ V 2P (l),

we have U∗ (V ; l) = D∞ (V, l).
However, note that the state space of the recursive problem constructed

for computing the optimal AP contract, V AP , is endogenous. Nevertheless, it
is the largest fixed point of a set operator and can be obtained through suc-
cessive iterations in a procedure introduced by Abreu, Pearce and Stacchetti
(1990).

Choose some V̂ ∈ R : V̂ ≥ max
l∈L

{
max V AP (l)

}
, where the right-hand

side of the inequality is well defined given V AP (l) compact, ∀l ∈ L and L

finite. Note that given Assumption 3,
[
V l, V̂

]
6= ∅, ∀l ∈ L. Then, for any

X = {Xl} : Xl ∈ R, ∀l ∈ L let B (X) := {Bl (X)} with
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Bl (X) := {Vl ∈
[
V

l
, V̂

]
: ∃cR : (7) − (10) and (12) hold at (Vl, l)},

where (12) is defined as:

V+ (Vl, y) ∈ X
l+(l,y) ∩

[
V

l+(l,y)
, +∞

)
, ∀y ∈ Y (12)

Note that Bl (X) gives the set of agent’s initial utilities that are not
below the reservation level

(
which follows from Vl ∈

[
V

l
, V̂

])
and that can

be supported by a single-round (stationary) contract at l that is admissible
[i.e., (7) and (8) hold], consistent [i.e., satisfies (9)], temporary incentive-
compatible [i.e., satisfies (10)] and has continuation utilities which are taken
from X and are not below the relevant reservation level [i.e., (12) holds].
In short, B maps continuation utilities to relevant initial utilities. It is this
operator that will help us recover the endogenous state space of T , V AP .

Proposition 12 (a) B
(
V AP

)
= V AP ; and (b) if ∃X ⊂ Rnθ

: B (X) = X,
then X ⊂ V AP .

This proposition establishes that the set of agent’s expected discounted
utilities supportable by an AP supercontract, V AP , is the largest fixed point
of B.

Proposition 13 Let X0 compact : V AP ⊂ X0 ⊂ Rnθ

and B (X0) ⊂ X0.
Define Xi+1 := B (Xi), ∀i ∈ Z+. Then, Xi+1 ⊂ Xi, ∀i ∈ Z+ and X∞ :=
lim

i→∞
Xi = V AP .

The proposition says that if we start iterating on B taking as an initial
guess some compact set X0 that contains both B (X0) and V AP , we will
ultimately converge to the largest fixed point of the operator, V AP . This
is sufficient for obtaining V AP since we can always take X0 = {X0,l} :[
V l, V̂

]
⊂ X0,l ⊂ R with X0,l compact, ∀l ∈ L. However, an even more

computationally efficient result exists.
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Let us modify the operator B as follows. For any X = {Xl} : Xl ∈ R,
∀l ∈ L let B̃ (X) :=

{
B̃l (X)

}
with

B̃l (X) := {Vl ∈ Xl : ∃cR : (7)-(10) and (13) hold at (Vl, l)},

where (13) is defined as:

V+ (y) ∈ X
l+(l,y) , ∀y ∈ Y (13)

Note that the operator B̃ does not require that the agent should commit
to the contract. Namely, we do not impose a constraint keeping the contin-
uation values for the utility of the agent above the lower bound given by the
reservation utility. From a computational point of view, we are increasing
the efficiency since we are relaxing the set of constraints.

Proposition 14 (a) Take X̃0 :=
{

X̃0,l

}
with X̃0,l =

[
V l, V̂

]
, ∀l ∈ L and

let X̃i+1 := B̃
(
X̃i

)
, ∀i ∈ Z+. Then, X̃i+1 ⊂ X̃i, ∀i ∈ Z+ and X̃∞ :=

lim
i→∞

X̃i = V AP . (b) B̃
(
V AP

)
= V AP ; and (c) if ∃X : ∅ 6= X ⊂ X̃0 and

B̃ (X) = X, then X ⊂ V AP .

This proposition outlines a practical way of obtaining V AP . Namely,
we start with the set

{[
V l, V̂

]}
and iterate on the set operator B̃ until

convergence in a properly defined sense is attained. Note that we can always
take V̂ = ν(max{W},min{A})

1−βA
.
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4 Conclusion

This paper builds a framework for analyzing dynamic moral hazard problems
characterized by limited commitment and history-dependent reservation util-
ities. This is achieved by constructing an equivalent recursive representation
that is stationary on a properly defined state space. The state space which
contains the expected discounted utilities of the agent on one dimension and
the initial histories on the other is characterized by a generalized Bellman
equation. Given the state space, the optimal AP contract is recursively
characterized by standard dynamic programming routines on bounded usc
functions and in the same time is used as an initial guess for the optimal 2P in
a procedure severely punishing any violation of the principal’s participation
constraint.

This general setting can be used to address multiple dynamic problems
including but not limited to executive compensation, stock option packages,
tenure decisions, optimal insurance, and investment. It would also be inter-
esting to try to endogenize the external options in a model directly providing
the link between fundamentals/beliefs and reservation utilities.
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APPENDIX

Lemma 1 Let (1) and (2) hold after l ∈ Y θ. Then, (3) ⇔

V0 (a,w, l) ≥ V0 (a′, w, l) ,∀(a′ : ∀nai (l) , a′
t ∈ A) (14)

Proof. It is trivial to show (3)⇒(14). Just take τ = 0. In the other direc-
tion, let (14) hold, but assume that (3) is not satisfied, i.e., there is a node
yτ−1 s.t. ∃a′ admissible ∀nai

(
yτ−1

)
and Vτ

(
a′, w, yτ−1

)
> Vτ

(
a,w, yτ−1

)
.

Let a′′ : ∀nai
(
yτ−1

)
, a′′

t = a′
t, with a′′

t = at elsewhere. Given (1) and (2), ν
is continuous on a compact set and, therefore bounded. Then, we obtain:

V0 (a′′, w, l) =
τ−1∑
t=0

βt
A

∑
yt∈Y

...
∑

y0∈Y

ν
(
wt

(
yt

)
, a′′

t

(
yt−1

)) t∏
i=0

π
(
yi, a

′′
i

(
yi−1

))
+

βτ
A

∑
yt−1∈Y

...
∑

y0∈Y

Vτ

(
a′′, w, yτ−1

) t−1∏
i=0

π
(
yi, a

′′
i

(
yi−1

))
> V0 (a,w, l) , (A1)

where the inequality follows from the construction of a′′ since
Vτ

(
a′, w, yτ−1

)
> Vτ

(
a,w, yτ−1

)
and π > 0 by Assumption 1. Given that

a′′ is admissible after l by construction, (A1) contradicts (14).

This proposition shows that incentive compatibility at an initial node
−θy is equivalent to incentive compatibility at all the nodes following l.

Proof of Proposition 1. It is trivial that (3) implies (6). In the
other direction, assume (6) holds at every node, but ∃ an admissible plan
a′ : V0 (a′, w, l) > V0 (a′, w, l). We have:

V0 (a′, w, l) =
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T∑
t=0

βt
A

∑
yt∈Y

...
∑

y0∈Y

ν
(
wt

(
yt

)
, a′

t

(
yt−1

)) t∏
i=0

π
(
yi, a

′
i

(
yi−1

))
+

βT+1
A

∑
yT ∈Y

...
∑

y0∈Y

VT+1

(
a′, w, yT

) T∏
i=0

π
(
yi, a

′
i

(
yi−1

))
,

where the second term on the right-hand side can be made arbitrarily
small by choosing T big enough given (1), (2) and the assumptions on βA,
ν, A, W . Therefore, ∃T ∈ Z+ and an admissible plan a′′ : a′′

t

(
yt−1

)
=

a′
t

(
yt−1

)
, ∀yt−1 ∈ l × Y t, ∀t ≤ T , and a′′

t = at elsewhere, s.t. V0 (a′′, w, l) >

V0 (a, w, l) Then, take τ ∈ Z+ : τ ≤ T s.t. ∃yτ−1 : a′′
τ

(
yτ−1

)
6= aτ

(
yτ−1

)
and @τ ′ ∈ Z++ : τ < τ ′ ≤ T : a′′

τ ′

(
yτ ′−1

)
6= aτ ′

(
yτ ′−1

)
for some yτ ′−1 ∈

l×Y τ ′
. If we define an admissible plan a′′′ : a′′′

τ

(
yτ−1

)
= aτ

(
yτ−1

)
,∀yτ−1 ∈

l × Y τ and a′′′
t = a′′

t elsewhere, by (6) at ∀yτ−1 ∈ l × Y τ , we have that
Vτ

(
a′′′, w, yτ−1

)
≥ Vτ

(
a′′, w, yτ−1

)
, from where V0 (a′′′, w, l) ≥ V0 (a′′, w, l).

Proceeding in this way we can eliminate all the deviations (note that τ ∈ Z+ :
τ ≤ T ) to obtain V0 (a, w, l) ≥ V0 (a′′, w, l), i.e., a contradiction. Therefore,
we obtain (6)⇒(14), which by Lemma 1 results in (6)⇒(3).

For any l ∈ L, let Cl := {c : (1) and (2) hold after l}.

Proof of Proposition 2. (a) Fix l ∈ L. Take τ ′, τ ′′ ∈ Z+ : τ ′ ≤ τ ′′

and arbitrary yτ ′−1 ∈ Y τ ′× l and yτ ′′−1 ∈ Y τ ′′× l. Take an arbitrary
V ′ ∈ V 2P

τ ′

(
yτ ′−1

)
. Then, there exists a contract c′ = (a′, w′) ∈ Γyτ′−1 :

Vτ ′

(
c′, yτ ′−1

)
= V ′. Define c′′ = (a′′, w′′) such that for any ỹt ∈ yτ ′′−1 ×

Y t−τ ′′+1 with t ≥ τ ′′, a′′
t

(
ỹt−1

)
:= a′

τ ′+t−τ ′′

(
yτ ′−1, ỹτ ′′ , ..., ỹt−1

)
, w′′

t (ỹt) :=

w′
τ ′+t−τ ′′

(
−θyτ ′−1, ỹτ ′′ , ..., ỹt

)
. It is straight-forward that Vτ ′′

(
c′′, yτ ′′−1

)
=

V ′ and c′′ ∈ Γyτ′′−1 . Therefore, we have that V ′ ∈ V 2P
τ ′′

(
yτ ′′−1

)
. The same

argument holds in the other direction, so we have proven that V 2P
τ ′′

(
yτ ′−1

)
=

V 2P
τ ′′

(
yτ ′′−1

)
.

Fix l ∈ L. V 2P (l) is bounded given (1) and (2). Regarding the com-
pactness of V 2P (l), we should also prove that it is closed. Take an ar-
bitrary convergent sequence {Vi}∞i=1 : Vi ∈ V 2P (l), ∀i ∈ Z++ with limit
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V∞. We need to show that V∞ ∈ V 2P (l). By the construction of the se-
quence, for any i ∈ Z++, ∃ci ∈ Γl such that V0(ci, l) = Vi. Then, for
any i ∈ Z++, ci ∈ Cl. Let us endow Cl with the product topology. Cl is
compact as a product of compact spaces. Consequently, there exists a con-
vergent subsequence {cik

}∞k=1 of {ci}∞i=1 such that c∞ := lim
k→∞

(cik
) ∈ Cl,

from where c∞ satisfies (1) and (2) after l. For any T ∈ Z+ : T ≥ τ, let

V T
τ (c, yτ−1) :=

T∑
t=τ

βt−τ
A

∑
yt∈Y

...
∑

yτ∈Y

[ν
(
wt (yt) , at

(
yt−1

))
]

t∏
i=τ

π
(
yi, ai

(
yi−1

))
.

Notice that

Vτ (c, yτ−1)−V T
τ (c, yτ−1) = βT+1

A

∑
yT ∈Y

...
∑

yτ∈Y

VT+1

(
c, yT

) T∏
i=τ

π
(
yi, ai

(
yi−1

))
∈ [βT+1

A
υ(min W,max A)

1−βP
, βT+1

A
υ(max W,min A)

1−βP
], ∀T ∈ Z+ : T ≥ τ , ∀c ∈ Cl,

∀yτ−1 ∈ l×Y τ , ∀τ ∈ Z+. Moreover, V T
τ (., yτ−1) is continuous on Cl. Then,

Vτ (., yτ−1) is continuous on Cl. Analogously, we can show that Uτ (., yτ−1)
is continuous on Cl. As a result, we have that c∞ satisfies (4), (5), (6) after
l and V0 (c∞, l) = V∞.

Following the same logic, we can show that V AP
τ

(
yτ−1

)
is time invariant

and compact and depends only on the last θ observations prior to signing.
(b) Analogous to the proof of (a).

Proof of Proposition 3. Fix l ∈ L. We have Γl ⊂ Cl. Let’s endow Cl

with a metric inducing the product topology. Then, following the argument
of the proof of Proposition 2, we obtain that Γl is compact and U0 (., l) is
continuous on Cl.

Proof of Proposition 4. Fix l ∈ L. By Proposition 3, we have that
∃c ∈ Γl and U0 (c, l) = U∗∗

l . Let V ∗∗ := V0 (c, l). By Proposition 1, V ∗∗ ∈
V 2P (l) and U∗∗

l ∈ U (V ∗∗, l). Therefore, U∗
l ≥ U∗∗

l . Suppose U∗
l > U∗∗

l .
Then, ∃V ∗ ∈ V 2P (l) : U∗∗

l < U∗ (V ∗, l) ≤ U∗
l . Since U∗ (V ∗, l) ∈ U (V ∗, l),

∃c∗ ∈ Γl, V0 (c∗, l) = V ∗ and U0 (c∗, l) = U∗ (V ∗, l). Then, by the definition
of U∗∗

l and Proposition 1 we have that U∗∗
l ≥ U∗ (V ∗, l), i.e., a contradiction

is reached. Consequently, U∗
l = U∗∗

l and the supremum in the definition of
U∗

l is achieved.

For any l ∈ L and ∀V ∈ V AP (l), define ΓAP
l (V ) := {c :(1), (2), (4), (6)

hold after l and V0 (c, l) = V } and GAP
l (V ) := {c ∈ ΓAP

l (V ) : U0 (c, l) =
UAP∗

(V, l)}.
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Lemma 2 For any l ∈ L, ΓAP
l (.) is upper hemi-continuous (uhc) on

V AP (l).

Proof. Fix l ∈ L and V ∈ V AP (l) and note that ΓAP
l (V ) is non-empty and

compact. Take a sequence {Vi}∞i=1 s.t. Vi ∈ V AP (l) , ∀i ∈ Z++ and Vi →
i→∞

V . Let ci ∈ ΓAP
l (Vi), ∀i ∈ Z++. Note that ΓAP

l (Vi) ⊂ Cl, ∀i ∈ Z++ with
Cl compact . Then, ∃ a subsequence

{
cij

}∞
j=1

of {ci}∞i=1 : cij →
j→∞

c ∈ Cl.

Since Vτ

(
.,−θ yτ−1

)
is continuous on Cl, c satisfies (4) and (6) after l and

V0 (c, l) = V . Therefore, c ∈ ΓAP
l (V ).

Proof of Proposition 5. Fix l ∈ L and V ∈ V AP (l). Take a sequence
{Vi}∞i=1 s.t. Vi ∈ V AP (l) , ∀i ∈ Z++ and Vi →

i→∞
V . Let ci ∈ GAP

l (Vi),

∀i ∈ Z++. Define UAP∗
l := lim

i→∞
UAP∗

(Vi, l). ∃ a subsequence
{
cij

}∞
j=1

of

{ci}∞i=1 : lim
j→∞

U0

(
cij , l

)
= UAP∗

l . Since GAP
l (.) ⊂ ΓAP

l (.) and ΓAP
l (.) is uhc

from Lemma 2, ∃ a subsequence
{
cijn

}∞
n=1

of
{
cij

}∞
j=1

: cijn
→

n→∞
c with

c ∈ ΓAP
l (V ). Then, UAP∗

l = lim
n→∞

U0

(
cijn

, l
)

= U0 (c, l) ≤ UAP∗
(V, l) where

the first equality comes from the fact that
{
cijn

}∞
n=1

is a subsequence of{
cij

}∞
j=1

and lim
j→∞

U0

(
cij , l

)
= UAP∗

l , the second follows from the continuity

of U0 (., l) and the third obtains directly from c ∈ ΓAP
l (V ) and the definition

of U
AP∗

(V, l). Therefore, U
AP∗

(., l) is usc on V AP (l).
Regarding the boundedness of U

AP∗

(., l), note that for any V ∈ V AP (l),
U

AP∗

(V, l) = U0 (cV , l) for some cV ∈ ΓAP
l (V ) ⊂ Cl with Cl non-empty and

compact. Since U0 (., l) : Cl → R is continuous on a compact set, it is also
bounded. Consequently, U

AP∗

(., l) is bounded on V AP (l).

Lemma 3 Fix arbitrary l ∈ L and V ∈ V AP (l), and let c ∈ GAP
l (V ).

Then, Uτ

(
c, ., l̃−1

)
= U

AP∗ (
Vτ

(
c∗, ., l̃−1

)
, l̃−1

)
, ∀nai(l).

Proof. Note that ∀nai( l), Vτ

(
c, ., l̃−1

)
∈ V AP

(
l̃−1

)
and, therefore,

U
AP∗ (

Vτ

(
c, ., l̃−1

)
, l̃−1

)
is well defined. Since for τ = 0, the result is
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trivial, take arbitrary τ ∈ Z++ and yτ−1 =
(
yτ−θ−1, l̃−1

)
∈ l × Y τ , and as-

sume that the lemma does not hold. Then, there exists a supercontract c′ ∈
ΓAP

el−1

(
Vτ

(
c, yτ−1

))
: U0

(
c′, l̃−1

)
> Uτ

(
c, yτ−1

)
. Let us construct a super-

contract c′′ after l s.t.
(
a′′

t

(
yt−1

)
, w′′

t

(
yt−1, yt

))
= (a′

t−τ (l̃−1, yτ , ..., yt−1),
w′

t−τ (l̃−1, yτ , ..., yt−1, yt)), ∀nai
(
yτ−1

)
, with (a′′

t

(
yt−1

)
, w′′

t

(
yt−1, yt

)
) =(

at

(
yt−1

)
, wt

(
yt−1, yt

))
elsewhere. By the definition of c and the construc-

tion of c′′ we have that c′′ satisfies (1), ( 2), ( 4), (6) after l and V0 (c′′, l) =
V0 (c, l) = V . Then, U0 (c′′, l) ∈ U

AP

(V, l). However, since Uτ

(
c′′, yτ−1

)
> Uτ

(
c, yτ−1

)
, we have that U0 (c′′, l) > U0 (c, l), which contradicts the fact

that U0 (c, l) = U
AP∗

(V, l).

The lemma says that at any contingency, the expected discounted utility
of the principal who has signed the AP supercontract maximizing his/her
utility at period 0 while guaranteeing the agent particular initial expected
discounted utility also gives the maximum initial utility the principal can
get by signing a new AP supercontract guaranteeing the agent an initial
utility equal to the utility the agent would receive in that contingency under
the previous contract. In other words, at the optimum the principal can
neither lose nor gain by breaching the original contract and signing a new
one guaranteeing the same utility stream to the agent.

For any l ∈ L and Vl ∈ V AP (l), define ΓAP
R (Vl, l) :=

{cR : (7) − (11) hold at (Vl, l)}.

Proof of Proposition 6. Take an arbitrary V = {Vl} ∈ V AP . Fix
l ∈ L. Given the existence of U

AP∗

(Vl, l), ∃ c ∈ Γl : V0 (c, l) = Vl and
U0 (c, l) = U

AP∗

(Vl, l). For any y ∈ Y , let a− := a0 (l), w+ (y) := w0 (l, y) ,
and V+ (y) := V1 (c, l, y). Then, we immediately have that (9) holds. More-
over, (1) ⇒ (7), (2) ⇒ (8), (6) ⇒ (10). As in the proof of Proposition
2 (a), for any y ∈ Y , we can construct c′y ∈ Γl+(l,y) : V0

(
c′y, l+ (l, y)

)
=

V1 (c, l, y), from where (11) also holds. By Lemma 3, for any y ∈ Y , we have
U1 (c, l, y) = U

AP∗

(V1 (c, l, y) , l+ (l, y)) = U
AP∗

(V+ (y) , l+ (l, y)). Conse-
quently, U

AP∗

(Vl, l) = U0 (c, l) =∑
y∈Y

[u (w0 (l, y) , y) + βP U1 (c, l, y)]π (y, a0 (l)) =
∑

y∈Y

[u (w+ (y) , y)+

βP U
AP∗

(V+ (y) , l+ (l, y))]π (y, a−), where U
AP∗

is usc and bounded from
Proposition 5. Then, by the definition of T (.), we have that Tl

(
U

AP∗ )
(Vl)

≥

30



U
AP∗

(Vl, l). Since V and l were chosen randomly, the result generalizes to
T

(
U

AP∗ )
≥ U

AP∗

.

Fix arbitrary V = {Vl} ∈ V AP and l ∈ L. We have demonstrated above
that ΓAP

R (Vl, l) 6= ∅. Then, since ΓAP
R (Vl, l) can be shown to be compact and

U
AP∗

is usc and bounded, there exists c∗R ∈ ΓAP
R (Vl, l) : Tl

(
U

AP∗ )
(Vl)

=∑
y∈Y

[u
(
w∗

+ (y) , y
)

+ βP U
AP∗ (

V ∗
+ (y) , l+ (l, y)

)
]π

(
y, a∗

−
)
}. By (11), for any

y ∈ Y , V ∗
+ (y) ∈ V AP (l+ (l, y)), from where there exists c∗y ∈ ΓAP

l+(l,y)

(
V ∗

+ (y)
)

:

U0

(
c∗y, l+ (l, y)

)
= U

AP∗ (
V ∗

+ (y) , l+ (l, y)
)
. Then, let c∗∗ be a supercontract

s.t. (a∗∗
0 (l) , w∗∗

0 (l, y)) =
(
a∗
−, w∗

+ (y)
)

and ∀nai (l, y), (a∗∗
t (l, y, .) , w∗∗

t (l, y, .))
= (a∗

y,t−1(l+ (l, y) , .), w∗
y,t−1(l+(l, y), .)), ∀y ∈ Y . It is immediate that c∗∗

satisfies (1), (2), (4), (6) after (l, y), ∀y ∈ Y . Moreover, (7)⇒ a∗∗
0 (l) ∈ A,

(8)⇒ w∗∗
0 (l, y) ∈ W , ∀y ∈ Y . By construction and (10), we have that (6)

holds at l. By (9), we obtain that V0 (c∗∗, l) = Vl ∈ V AP (l), from where (4) is
satisfied at l. Finally, we have that Tl

(
U

AP∗ )
(Vl)

= U0 (c∗∗, l) ∈ UAP (Vl, l),

from where U
AP∗

(Vl, l) ≥ Tl

(
U

AP∗ )
(Vl)

. As before, this immediately gen-

eralizes to T
(
U

AP∗ )
≥ U

AP∗

.

Proof of Proposition 7. (a) Analogously to the proof of Lemma 2, we
can show that for any l ∈ L, ΓAP

R (., l) is uhc on V AP (l). Then, following an
argument similar to the proof of Proposition 5, we conclude that T (U)(.) is
usc on V AP . It is trivial to show that T (U)(.) is also bounded.

(b) The result follows by the argument of Theorem 3.3 in Stokey and
Lucas (1989) since it is trivial that T satisfies the Blackwell’s sufficient con-
ditions.

(c) Assume on the contrary that µ
(
Ũ , U

AP∗ )
> 0. We have that

µ
(
Ũ , U

AP∗ )
= µ

(
T

(
Ũ

)
, T

(
U

AP∗ ))
≤ βP µ

(
Ũ , U

AP∗ )
, where the equal-

ity follows from the fact that both Ũ and U
AP∗

are fixed points of T (the first
- by assumption, the second - by Proposition 6) and the inequality obtains by
(b). However, this contradicts βP ∈ (0, 1). Consequently, µ

(
Ũ , U

AP∗ )
= 0.

(d) Since by (a) T maps ({USCBl} , µ) into itself, the existence of Tn (U)
is guaranteed for any n ∈ Z+. Using Proposition 6 and successively applying
(b), we obtain µ

(
Tn (U) , U

AP∗ )
≤ βn

P µ
(
U,U

AP∗ )
. Note that µ

(
U,U

AP∗ )
<
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∞ since U is bounded by assumption and U
AP∗

is bounded by Proposition
5. Therefore, given βP ∈ (0, 1), the result follows.

Proof of Proposition 8. Take arbitrary U ∈ {USCBAl}, l ∈ L, V∞ ∈
V AP (l) and {Vi}∞i=1 s.t. Vi ∈ V AP (l), for any i ∈ Z++

and Vi →
i→∞

V∞. If lim
i→∞

T l (U)(Vi)
= −∞, the result is trivial. If

lim
i→∞

T l (U)(Vi)
> −∞, we can always extract a subsequence {Vik

}∞k=1 of

{Vi}∞i=1 s.t. T l (U)(Vik) > −∞, ∀k ∈ Z++ and lim
k→∞

T l (U)(Vik) =

lim
i→∞

T l (U)(Vi)
. Since ΛR (Vik

, U, l) 6= ∅, ∀k ∈ Z++, we can apply the argu-

ment used in the proof of Proposition 5 to obtain lim
i→∞

T l (U)(Vi)
≤

T l (U)(V∞).

Proof of Proposition 9. (a) Notice that UAP∗ ∈ {USCBl} ⊂ {USCBAl}.
Then, directly from the definition of T and T , we have T

(
UAP∗) ≤

T
(
UAP∗)

= UAP∗
, where the equality follows from Proposition 6. Since

T l is monotonic for any l ∈ L, {Di}i∈Z+
is a weakly decreasing sequence of

bounded from above usc functions, therefore there exists D∞ ∈ {USCBAl} :
Di (Vl, l) →

i→∞
D∞ (Vl, l), ∀Vl ∈ V AP (l), ∀l ∈ L.

(b) First we are going to prove T (D∞) ≥ D∞. Fix l ∈ L and Vl ∈
V AP (l). Let us assume that D∞ (Vl, l) > −∞ because otherwise the result
is trivial. Since D∞ (Vl, l) is a limit of a weakly decreasing sequence, we have
that Di (Vl, l) > −∞, ∀i ∈ Z+. Consequently, Di (Vl, l) ≥ U l, ∀i ∈ Z+ since
Di (Vl, l) < U l ⇒ ΛR (Vl, Di, l) = ∅ ⇒ Di+1 (Vl, l) = −∞. This immedi-
ately implies that D∞ (Vl, l) ≥ U l. Moreover, ΓR (Vl, Di−1, l) 6= ∅, ∀i ∈ Z++

since if ΓR (Vl, Di−1, l) = ∅, we would have Di (Vl, l) = −∞. Then, for any
i ∈ Z++, since Di−1 is usc and ΓR (Vl, Di−1, l) is compact (trivial given Di−1

is usc), ∃cR,i ∈ ΓR (Vl, Di−1, l) such that Di (Vl, l) =
∑

y∈Y

[u (w+,i (y) , y)+

βP Di−1 (V+,i (y) , l+ (l, y))]π (y, a−,i) ≥ U l. Since ∀i ∈ Z++, ΓR (Vl, Di−1, l)⊂
ΓAP

R (Vl, l) and ΓAP
R (Vl, l) is compact, ∃ a convergent subsequence of {cR,i}∞i=1,

{cR,ik
}∞k=1, s.t. cR,∞ := lim

k→∞
cR,ik

∈ ΓAP
R (Vl, l). Fix an arbitrary y ∈ Y .

Then, we have:

D∞ (V+,∞ (y) , l+ (l, y)) =

lim
j→∞

Dij−1 (V+,∞ (y) , l+ (l, y)) ≥

32



lim
j→∞

lim
k→∞

Dij−1 (V+,ik
(y) , l+ (l, y)) ≥

lim
j→∞

lim
k→∞

Dik−1 (V+,ik
(y) , l+ (l, y)) =

lim
k→∞

Dik−1 (V+,ik
(y) , l+ (l, y)) ,

where the first equality follows from
{
Dij−1

}∞
j=1

being a subsequence
of a sequence converging to D∞ by (a), the first inequality results from
the upper semicontinuity of Dij−1, the second inequality derives from the
fact that {Di}∞i=0 is weakly decreasing, hence Dik−1 (V+,ik

(y) , l+ (l, y)) ≤
Dij−1 (V+,ik

(y) , l+ (l, y)), ∀k ≥ j, and the last equality is trivial. Notice
that Dik−1 (V+,ik

(y) , l+ (l, y)) ≥ U l+(l,y), ∀k ∈ Z++ since by construction
cR,ik

∈ ΓR (Vl, Dik−1, l) 6= ∅. Then, D∞ (V+,∞ (y) , l+ (l, y)) ≥ U l+(l,y), from
where cR,∞ (Vl) ∈ ΓR (Vl, D∞, l). Finally,

T l (D∞)(Vl)
=

max
cR∈

ΓR(Vl,D∞,l)

∑
y∈Y

[u (w+ (y) , y) + βP D∞ (V+ (y) , l+ (l, y))]π (y, a−) ≥

∑
y∈Y

[u (w+,∞ (y) , y) + βP D∞ (V+,∞ (y) , l+ (l, y))]π (y, a−,∞) ≥

lim
k→∞

∑
y∈Y

[u (w+,ik
(y) , y) + βP Dik−1 (V+,ik

(y) , l+ (l, y))]π (y, a−,ik
) =

lim
k→∞

Dik
(Vl, l) =

D∞ (Vl, l) ,

where the first equality follows from the fact that D∞ (Vl, l) ≥ U l, D∞
is usc, ΓR (Vl, D∞, l) is non-empty and compact, the first inequality - from
cR,∞ (Vl) ∈ ΓR (Vl, D∞, l), the second inequality - by using the result ob-
tained earlier by developing for D∞ (V+,∞ (y) , l+ (l, y)), the following equal-
ity - by construction, and the last equality - by construction and (a).

To conclude the proof, we need to show that T (D∞) ≤ D∞. Fix l ∈ L
and Vl ∈ V AP (l). If T l (D∞)(Vl)

= −∞, the result is trivial, so assume
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T l (D∞)(Vl)
> −∞ ⇒ ΛR (Vl, D∞, l) 6= ∅. From (a), we have that for any

i ∈ Z+, D∞ ≤ Di, from where ΛR (Vl, D∞, l) ⊂ ΛR (Vl, Di, l), ∀i ∈ Z+.
Then, for any i ∈ Z+:

T l (D∞)(Vl)
=

max
cR∈

ΛR(Vl,D∞,l)

∑
y∈Y

[u (w+ (y) , y) + βP D∞ (V+ (y) , l+ (l, y))]π (y, a−) ≤

max
cR∈

ΛR(Vl,Di,l)

∑
y∈Y

[u (w+ (y) , y) + βP Di (V+ (y) , l+ (l, y))]π (y, a−) =

Di+1 (Vl, l)

Consequently, T l (D∞)(Vl)
≤ lim

i→∞
Di+1 (Vl, l) = D∞ (Vl, l).

(c) Let D′ ∈ {USCBAl} : T (D′) = D′. Note that ∃D ∈
{USCBl} : D ≥ D′. Consequently, T

(
D

)
≥ T (D′) ≥ D′, where the

first inequality follows from the monotonicity of T , while the second comes
from T ≥ T and the fact that T (D′) = D′. Repeating the argument,
we obtain Tn

(
D

)
≥ D′ for any n ∈ Z+. Then, by Proposition 7 (d) we

have that UAP∗
= lim

n→∞
Tn

U

(
D

)
≥ D′, where the convergence is in terms

of µ. Fix l ∈ L and Vl ∈ V AP (l). By the monotonicity of T , we have
Di = T i

(
UAP∗) ≥ T i (D′) = D′, ∀i ∈ Z+. Therefore, D∞ ≥ D′.

Lemma 4 T
(
Û∗

)
≥ Û∗.

Proof. [Adapted from the first part of the proof of Proposition 6] Fix an
arbitrary l ∈ L. If Vl ∈ V AP (l) \V 2P (l), Û∗ (Vl, l) = −∞ and the re-
sult is trivial. Therefore, take Vl ∈ V 2P (l). Then, Û∗ (Vl, l) = U∗ (Vl, l).
Given the existence of U∗ (Vl, l), we have that ∃c ∈ Γl : V0 (c, l) = Vl and
U0 (c, l) = U∗ (Vl, l). For any y ∈ Y , let a− := a0 (l), w+ (y) := w0 (l, y) ,
V+ (y) := V1 (c, (l, y)). Then we immediately have that (9) holds. More-
over, (1) ⇒ (7), (2) ⇒ (8), (6) ⇒ (10). For any y ∈ Y , we can con-
struct c′ ∈ Γl+(l,y) : V0 (c′, l+ (l, y)) = V1 (c, l, y), from where we have that
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V+ (y) ∈ V 2P (l+ (l, y)) ⊂ V AP (l+ (l, y)), i.e., (11) holds. From (5), we
have U∗ (Vl, l) ≥ U l. Furthermore, by slightly modifying the argument of
Lemma 3, for any y ∈ Y , U∗ (V+ (y) , l+ (l, y)) = U∗ (V1 (c, l, y) , l+ (l, y)) =
U1 (c, l, y). Then, from (5) we obtain that U∗ (V+ (y) , l+ (l, y)) ≥ U l+(l,y),
∀y ∈ Y . Finally, Û∗ is usc (by the argument used in the proof of Proposition
5 given the qualifications stated in the proof of Proposition 8) and bounded
from above. Then, by the definition of T , we have that T l

(
Û∗

)
(Vl)

≥

Û∗ (Vl, l).

Lemma 5 T
(
Û∗

)
≤ Û∗.

Proof. [Adapted from the second part of the proof of Proposition 6] Take l ∈
L and Vl ∈ V AP (l). If T l

(
Û∗

)
(Vl)

= −∞, the result is trivial; therefore, as-

sume that T l

(
Û∗

)
(Vl)

> −∞. This implies that Û∗ (Vl, l) ≥ U l , from where

we immediately have that Vl ∈ V 2P (l) and Û∗ (Vl, l) = U∗ (Vl, l). Since we
would trivially obtain T l

(
Û∗

)
(Vl)

≤ Û∗ (Vl, l) if T l

(
Û∗

)
(Vl)

≤ U l, assume

T l

(
Û∗

)
(Vl)

> U l. Also note that T l

(
Û∗

)
(Vl)

= max
cR∈

ΓR(Vl, bU∗,l)

∑
y∈Y

[u (w+ (y) , y)+

βP Û∗ (V+ (y) , l+ (l, y))]π (y, a−) with ΓR

(
Vl, Û

∗, l
)
6= ∅. Given that Û∗ is

usc and ΓR

(
Vl, Û

∗, l
)

is compact, there exists a contract c∗R such that (7)−

(11) hold at (Vl, l), Û∗ (
V ∗

+ (y) , l+ (l, y)
)
≥ U l+(l,y), ∀y ∈ Y and T l

(
Û∗

)
(Vl)

=∑
y∈Y

[u
(
w∗

+ (y) , y
)
+ βP Û∗ (

V ∗
+ (y) , l+ (l, y)

)
]π

(
y, a∗

−
)
. By (11), V ∗

+ (y) ∈

V AP (l+ (l, y)), which together with Û∗ (
V ∗

+ (y) , l+ (l, y)
)
≥ U l+(l,y) implies

V ∗
+ (y) ∈ V 2P (l+ (l, y)). Since Û∗ (

V ∗
+ (y) , l+ (l, y)

)
= U∗ (

V ∗
+ (y) , l+ (l, y)

)
,

∃c∗y ∈ Γl+(l,y) : V0

(
c∗y, l+ (l, y)

)
= V ∗

+ (y) and U0

(
c∗y, l+ (l, y)

)
=

Û∗ (
V ∗

+ (y) , l+ (l, y)
)
. Note that this is true for any y ∈ Y . Then, let c∗∗

be defined as follows: (a∗∗
0 (l) , w∗∗

0 (l, y)) =
(
a∗
−, w∗

+ (y)
)

and (a∗∗
t (l, y, .),

w∗∗
t (l, y, .)) = (a∗

y,t−1(l+ (l, y) , .)), w∗
y,t−1(l+ (l, y) , .)), ∀nai(l, y), ∀y ∈ Y . It

is immediate that c∗∗ ∈ Γl,y, ∀y ∈ Y . Moreover, (7) ⇒ a∗∗
0 (l) ∈ A, (8) ⇒

w∗∗
0 (l, y) ∈ W , ∀y ∈ Y . By construction and (10), we have that (6) holds at
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l. By (9), we obtain that V0 (c∗∗, l) = Vl ∈ V 2P (l), from where (4) is satisfied
at l. Furthermore, we have that U0 (c∗∗, l) = Tl

(
Û∗

)
(Vl)

> U l. Therefore,

Tl

(
Û∗

)
(Vl)

∈ U2P (Vl, l), from where Û∗ (Vl, l) = U∗ (Vl, l) ≥ Tl

(
Û∗

)
(Vl)

.

Proof of Proposition 10. From Lemmas 4 and 5.

Proof of Proposition 11. Since Û∗ ∈ {USCBAl}, by Propositions 9 (c)
and 10 we obtain Û∗ ≤ D∞. What remains to be shown is that Û∗ ≥ D∞.
Fix l ∈ L and Vl ∈ V AP (l)}. If D∞ (Vl, l) = −∞, the result is trivial;
therefore, assume D∞ (Vl, l) > −∞. Then, D∞ (Vl, l) = T l (D∞)(Vl)

=
max

cR,l(Vl)∈
ΓR(Vl,D∞,l)

∑
y∈Y

[u (w+ (Vl, y) , y)+βP D∞ (V+ (Vl, y) , l+ (l, y))]π (y, a− (Vl)) with

ΓR (Vl, D∞, l) nonempty and D∞ (Vl, l) ≥ U l since otherwise we would have
D∞ (Vl, l) = −∞. Since D∞ is usc and ΓR (Vl, D∞, l) is compact, we have
that ∃c∗R (Vl, l) ∈ ΓR (Vl, D∞, l) s.t. T l (D∞)(Vl)

=
∑

y∈Y

[u
(
w∗

+ (Vl, y) , y
)
+

βP D∞
(
V ∗

+ (Vl, y) , l+ (l, y)
)
]π

(
y, a∗

− (Vl)
)
. Since D∞

(
V ∗

+ (Vl, y) , l+ (l, y)
)
≥

U l+(l,y), ∀y ∈ Y , we have:

D∞
(
V ∗

+ (Vl, y) , l+ (l, y)
)

= T l+(l,y) (D∞)V ∗
+(Vl,y) =

max
cR(V ∗

+(Vl,y),l+(l,y))∈
ΓR(V ∗

+(Vl,y),D∞,l+(l,y))

∑
y′∈Y

[u
(
w+

(
V ∗

+ (Vl, y) , y′) , y′)+

βP D∞
(
V+

(
V ∗

+ (Vl, y) , y′) , l+ (l+ (l, y) , y′)
)
]π

(
y′, a−

(
V ∗

+ (Vl, y)
))

with ΓR

(
V ∗

+ (Vl, y) , D∞, l+ (l, y)
)

nonempty, so the previous analysis ap-
plies. Proceeding in this way, we can construct a supercontract c such that
∀nai(l), at

(
yt−1

)
:= a∗

−
(
V ∗ t

+

(
Vl, y

t−1
)
, yt−1

)
, wt

(
yt−1, yt

)
:=

w∗
+

(
V ∗ t

+

(
Vl, y

t−1
)
, yt−1, yt

)
, where V ∗ t

+ (Vl, l, y0, ..., yt−1) :=
V ∗

+ 〈yt−1〉 ◦ ... ◦ V ∗
+ 〈y0〉 (Vl, l) for any t ∈ Z++ and V ∗ 0

+ (Vl, l) := Vl with
V ∗

+ 〈yτ 〉
(
V, yτ−1

)
:= V ∗

+

(
V, yτ−1, yτ

)
, ∀yτ ∈ Y , V ∈ V AP (l (yτ−θ, ..., yτ−1)),

yτ−1 ∈ l × Y τ , τ ∈ Z+. We immediately have (7) ⇒ (1) and (8) ⇒ (2).
Moreover, by construction and successively applying (9), we obtain that
∀nai(l):
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Vt

(
c, yt−1

)
− V ∗ t

+

(
Vl, y

t−1
)

=

lim
T→∞

βA
T

∑
yt+T−1∈Y

...
∑

yt∈Y

[Vt+T

(
c, yt+T−1

)
−

V ∗ t+T
+

(
Vl, y

t+T−1
)
]
t+T−1∏

i=t

π
(
yi, ai

(
yi−1

))

Consequently, ∀nai(l), Vt

(
c, yt−1

)
= V ∗ t

+

(
Vl, y

t−1
)

since by (11)
V ∗ t

+

(
Vl, y

t−1
)

∈ V AP (l (yτ−θ, ..., yτ−1)) and is therefore bounded, while
Vt

(
c, yt−1

)
is bounded given (7) and (8). In particular, V0

(
c, yτ−1

)
= Vl.

Then (10) ⇒ (6). Furthermore, Vt

(
c, yt−1

)
∈ V AP (l (yτ−θ, ..., yτ−1)), im-

plies that (4) holds after l. Since Uτ

(
c, yt−1

)
is bounded given (7) and (8)

and D∞
(
V ∗ t

+

(
Vl, y

t−1
)
, l (yτ−θ, ..., yτ−1)

)
is bounded from above by Propo-

sition 9 (a).and from below by min
l∈L

U l (well defined given L finite), we also

have that Ut

(
c, yt−1

)
= D∞

(
V ∗ t

+

(
Vl, y

t−1
)
, l (yτ−θ, ..., yτ−1)

)
, ∀nai(l). In

particular, U0 (c, l) = D∞ (Vl, l). Then, (5) is satisfied at any node. There-
fore, Vl ∈ V 2P (l) and D∞ (Vl, l) ∈ U2P (Vl, l). Then, Û∗ (Vl, l) = U∗ (Vl, l) ≥
D∞ (Vl, l).

Lemma 6 V AP ⊂ B
(
V AP

)
.

Proof. Let V ∈ V AP and fix an arbitrary l ∈ L. From Vl ∈ V AP (l) ,

∃c ∈ ΓAP
l (Vl). By construction, Vl ∈

[
V

l
, V̂

]
. For any y ∈ Y, let a− :=

a0 (l), w+ (y) := w0 (l, y), and V+ (y) := V1 (c, l, y). Given these choices,
we immediately have that (9) holds. Moreover, (1) ⇒ (7), (2) ⇒ (8),
(6) ⇒ (10). Note that for any y ∈ Y , V AP (l+ (l, y)) ∩

[
V

l+(l,y)
,+∞

)
=

V AP (l+ (l, y)). Since for any y ∈ Y we can construct a supercontract c′y ∈
ΓAP

l+(l,y)(V1 (c, (l, y)), we have that (12) is satisfied. Therefore, Vl ∈ Bl

(
V AP

)
.

Since l ∈ L was chosen randomly, this generalizes to V ∈ B
(
V AP

)
.

The lemma establishes that V AP is self-generating in the terminology of
Abreu, Pearce and Stacchetti (1990).
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Lemma 7 Assume X = {Xl} : ∅ 6= Xl ⊂ Bl (X), ∀l ∈ L. Then, B (X) ⊂
V AP .

Proof. Let the condition of the lemma hold and take V ∈ B (X). Fix an
arbitrary l ∈ L. Since Vl ∈ Bl (X), ∃cR,l (Vl) : (7)-(10) and (12) hold at l.
By (12) and X

l+(l,y) ⊂ B
l+(l,y) (X), we obtain that V+,l (Vl, y) ∈ B

l+(l,y) (X).
Then, ∀y ∈ Y , ∃cR : (7)-(10) and (12) hold at (V+,l (Vl, y) , l+ (l, y)). Pro-
ceeding this way, as in the proof of Proposition 11, we can consecutively
construct a supercontract c after l s.t. c ∈ ΓAP

l (Vl). Here, it deserves noting

that while (12) implies (4) on every node but the first, Vl ∈ Bl (X) ⊂
[
V l, V̂

]
,

from where (4) is also satisfied at l. Therefore, Vl ∈ V AP (l), which general-
izes to V ∈ V AP .

The lemma says that the image of every nonempty, self-generating set is
a subset of V AP .

Proof of Proposition 12. (a) By Assumption 3 and Lemma 6, V AP

satisfies the condition of Lemma 7. Therefore, B
(
V AP

)
⊂ V AP , which

together with Lemma 6 implies the result.
(b) It follows by Lemma 7.

Lemma 8 Assume X ′ = {X ′
l} and X ′′ = {X ′′

l } : X ′
l ⊂ X ′′

l ⊂ R, ∀l ∈ L.
Then, Bl (X ′) 6= ∅ ⇒ Bl (X ′) ⊂ Bl (X ′′), ∀l ∈ L.

Proof. Trivial.

Lemma 9 Assume X = {Xl} : Xl ⊂ R compact, ∀l ∈ L. Then, Bl (X) 6=
∅ ⇒ Bl (X) compact, ∀l ∈ L.

Proof. Let the condition of the lemma hold and assume Bl (X) 6= ∅ for
some l ∈ L. Note that Bl (X) ⊂

[
V l, V̂

]
⊂ R is bounded by definition. We

should also show that it is closed. Take an arbitrary convergent sequence
{Vi}∞i=1 : Vi ∈ Bl (X), ∀i ∈ Z++ with Vi →

i→∞
V∞. We need to prove that

V∞ ∈ Bl (X). By construction, we have that for any i ∈ Z++, Vi ∈
[
V l, V̂

]
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and ∃cR,i :(7)-(10), (12) hold at (Vi, l). By Vi ∈
[
V l, V̂

]
, ∀i ∈ Z++, we

obtain V∞ ∈
[
V l, V̂

]
. By (7), (8), (12), Assumption 2, L finite, and Xl ⊂

R compact for any l ∈ L, we have that {cR,i}∞i=1 is uniformly bounded,
therefore ∃ a subsequence {cR,ik

}∞k=1 of {cR,i}∞i=1 : cR,ik
→

k→∞
cR,∞. It is

immediate that cR,∞ satisfies (7)-(10), (12) at (V∞, l).

Proof of Proposition 13. For any l ∈ L and i ∈ Z+, denote by Xi,l the el-
ement of Xi corresponding to initial history l. By the condition of the Propo-
sition and Assumption 3, we have that ∅ 6= V AP (l) ⊂ X0,l ⊂ R, ∀l ∈ L.
Since by Proposition 12 (a) Bl

(
V AP

)
= V AP (l), we can apply Lemma 8

to obtain ∅ 6= V AP (l) ⊂ X1,l ⊂ R, ∀l ∈ L. Using X1 ⊂ X0 and repeating
the argument, we reach V AP ⊂ Xi+1 ⊂ Xi, ∀i ∈ Z+ Then, {Xi}∞i=0 is a
sequence of non-empty, compact (by Lemma 9 since X0 compact), monoton-
ically decreasing (nested) sets; therefore it converges to X∞ =

∞
∩

i=0
Xi ⊃ V AP

with X∞ compact.
What remains to be shown is that X∞ ⊂ V AP . By Lemma 7, it is

enough to show that X∞ ⊂ B (X∞). Let V ∈ X∞. This implies that
V ∈ Xi, ∀i ∈ Z+. Fix an arbitrary l ∈ L. We have that ∃cR,i : (7)-
(10), (12) hold at (Vl, l). By (7), (8), (12), Assumption 2, L finite, and
Xi ⊂ X0 ⊂ Rnθ

compact, ∀i ∈ Z+, we have that {cR,i}i∈Z+
is uniformly

bounded; therefore, ∃ a subsequence {cR,ik
}∞k=1 of {cR,i}∞i=1 : cR,ik

→
k→∞

cR,∞. It is immediate that cR,∞ satisfies (7)-(10) at (Vl, l). Moreover,
V+,∞ (y) ≥ V l+(l,y), ∀y ∈ Y . We also need to show that for any y ∈ Y ,
V+,∞ (y) ∈ X∞,l+(l,y). Fix an arbitrary y ∈ Y and assume, on the contrary,

that V+,∞ (y) /∈ X∞,l+(l,y). Since X∞,l+(l,y) =
∞
∩

i=0
Xi,l+(l,y) =

∞
∩

k=0
Xik,l+(l,y),

we have that ∃k′ ∈ Z+ : V+,∞ (y) /∈ Xik′ ,l+(l,y). Furthermore,
{
Xik′

}∞
k=0

was shown to be a monotonically decreasing (nested) sequence, from where
V+,ik

(y) ∈ Xik,l+(l,y) ⊂ Xik′ ,l+(l,y), ∀k ∈ Z+ : k ≥ k′. Since Xik′ ,l+(l,y) is
closed and V+,ik

(y) →
k→∞

V+,∞ (y), we obtain that V+,∞ (y) ∈ Xik′ ,l+(l,y),

i.e., a contradiction is reached. This proves V+,∞ (y) ∈ X∞,l+(l,y), ∀y ∈ Y .

Consequently, (12) holds for cR,∞. Finally, note that Vl ∈
[
V l, V̂

]
follows

immediately from Vl ∈ X1,l. Therefore, Vl ∈ Bl (X∞), which generalizes to
V ∈ B (X∞).

For any X = {Xl} : Xl ∈ R, ∀l ∈ L let B′ (X) := {B′
l (X)} with
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B′
l (X) := {Vl ∈

[
V

l
, V̂

]
: ∃cR : (7) − (10) and (13) hold at (Vl, l)}.

Note that the only difference between this operator and operator B̃ de-
fined in Section 3 is that B′

l (X) ⊂
[
V

l
, V̂

]
, while B̃l (X) ⊂ X

l
.

Lemma 10 Take X ′
0 :=

{
X ′

0,l

}
with X ′

0,l :=
[
V l, V̂

]
, ∀l ∈ L and let

X ′
i+1 := B′ (X ′

i), ∀i ∈ Z+. Then, X ′
i+1 ⊂ X ′

i, ∀i ∈ Z+ and X ′
∞ := lim

i→∞
X ′

i =

V AP .

Proof. We have that X ′
0 is compact and V AP ⊂ X ′

0 ⊂ Rnθ

. Note that for
any X ⊂ Rnθ

: Bl (X) 6= ∅, we have Bl (X) ⊂ B′
l (X). Then, by Lemma

8 and Proposition 12 (a), we obtain V AP ⊂ B (X ′
0) ⊂ B′ (X ′

0). Using the
same arguments plus the monotonicity of B′ (trivial), we have V AP ⊂ X ′

i,
∀i ∈ Z+. Moreover, by construction B′ (X ′

0) ⊂ X ′
0. Then, the condition

B (X ′
0) ⊂ X ′

0 is satisfied. Observe that for any l ∈ L, X ′
1,l = {Vl ∈

[
V l, V̂

]
:

∃cR s.t. (7) − (10), (13) hold at (Vl, l)} = {Vl ∈
[
V l, V̂

]
: ∃cR s.t. (7)

− (10), (12) hold at (Vl, l)} = Bl (X ′
0) since, by construction, we have that

X ′
0,l+(l,y) ∩

[
V

l+(l,y)
,+∞

)
= X ′

0,l+(l,y), ∀y ∈ Y . Furthermore, by X ′
1 ⊂ X ′

0

and the monotonicity of B′, we obtain X ′
i+1 ⊂ X ′

i, ∀i ∈ Z+. Then, it is
trivial that X ′

i+1 = B (X ′
i), ∀i ∈ Z+ Therefore, Proposition 13 applies to

{X ′
i}

∞
i=1.

Lemma 11 Let {X ′
i}

∞
i=1 be defined as in Lemma 10. Take X̃0 := X ′

0 and

let X̃i+1 := B̃
(
X̃i

)
, ∀i ∈ Z+. Then, X̃i = X ′

i, ∀i ∈ Z+.

Proof. Assume X̃i−1 = X ′
i−1 for some i ∈ Z++. By Lemma 10, ∅ 6=

X ′
i ⊂ X ′

i−1. Fix l ∈ L and let V ∈ X ′
i,l Then, we have V ∈ X̃i−1,l,

which together with V ∈ B′
l

(
X̃i−1

)
implies that V ∈ B̃l

(
X̃i−1

)
. Since

l and V were chosen randomly, this generalizes to X ′
i ⊂ X̃i. Then, X̃i is
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non-empty. Note that X̃i−1 = X ′
i−1 ⊂ X ′

0 by Lemma 10. Consequently,

∅ 6= B̃l

(
X̃i−1

)
⊂ B′

l

(
X̃i−1

)
, i.e., X̃i ⊂ X ′

i.

We have that X̃0 = X ′
0 by definition and have just shown that X̃i−1 =

X ′
i−1 would imply X̃i = X ′

i; therefore, by induction we obtain that X̃i = X ′
i

for any i ∈ Z+.

Proof of Proposition 14. (a) From Lemmas 10 and 11.
(b) Similarly to the proof of Lemma 6, we can show that V AP ⊂

B̃
(
V AP

)
. Since B̃

(
V AP

)
is nonempty, it can easily be obtained that

B̃
(
V AP

)
⊂ V AP .

(c) Since ∅ 6= X ⊂ X̃0, we can use the monotonicity of B̃ and B̃ (X) = X

to obtain X ⊂ X̃i, ∀i ∈ Z+. Then, by (a), we have X ⊂ X̃∞ = V AP .
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Данное исследование рассматривает проблему морального риска в бесконечно повто-
ряющейся модели принципала-агента. В этой модели и принципал, и агент не способны 
придерживаться заключенного контракта в долгосрочной перспективе, и их гарантиро-
ванные полезности потенциально зависят от конечного отсечения предыстории наблю-
даемых переменных. После того как существование доказано, оригинальной проблеме 
получения оптимального самоподдерживающего контракта дано эквивалентное представ-
ление, которое является рекурсивным в подходящем пространстве состояний. Для этого 
была создана вспомогательная версия проблемы, в которой участие принципала не гаран-
тировано. Доказано, что эндогенное пространство состояний, которое включает в себя как 
дисконтированные ожидаемые полезности агента, так и набор первоначальных историй, 
чтобы учесть их влияние на гарантированные полезности, является крупнейшей фикси-
рованной точкой оператора над множеством. Продемонстрировано, что можно вывести 
самоподдерживающийся контракт рекурсивно из решения вспомогательной проблемы, 
строго наказывая любое нарушение ограничений участия принципала.
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