Sources of Risk in Currency Returns

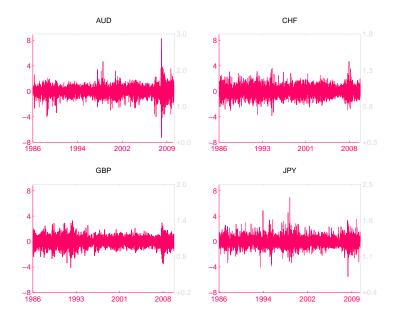
Mikhail Chernov (LSE), Jeremy Graveline (Minnesota), and Irina Zviadadze (LBS)

LFE conference, Moscow | November 2011

Excess currency returns

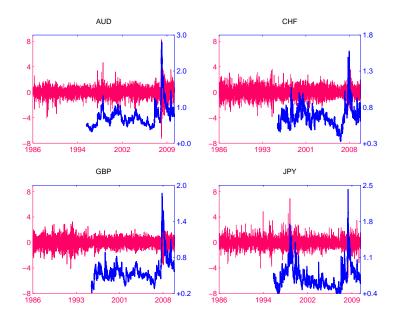
- Borrow e^{-r_t} at the interest rate r_t
- The exchange rate is S_t (pay S_t for £1)
- Convert \$ into $\pounds 1/S_t \cdot e^{-r_t}$ and invest for one period at the UK interest rate \tilde{r}_t
- At the end of the period, receive $\pounds 1/S_t \cdot e^{\tilde{r}_t r_t}$
- Convert the cash back into \$S_{t+1}/S_t · e^{r̃t-rt} at the prevailing exchange rate S_{t+1}
- Finally, repay the loan with interest, i.e., one unit of the domestic currency
- In this paper, we will always treat USD as a domestic currency

Which types of risk affect currency returns?



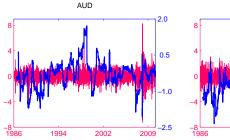
LSE 2/27

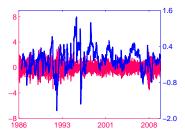
Which types of risk affect currency returns?

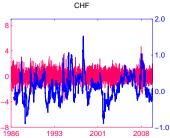


LSE 2/27

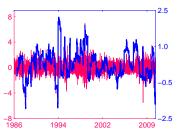
Which types of risk affect currency returns?







JPY



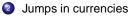
Basic properties of excess currency returns

		Mean	Std Dev	Skewness	Kurtosis	Nobs
AUD	Return	0.0186	0.7435	-0.3870	13.7202	6332
	$\Delta \sqrt{IV}$	0.0109	3.7661	0.9077	9.7290	3933
CHF	Return	0.0057	0.7232	0.1194	4.7841	6521
	$\Delta \sqrt{IV}$	0.0073	3.8057	0.9966	9.8095	3823
GBP	Return	0.0096	0.6197	-0.2337	5.6832	6521
	$\Delta \sqrt{IV}$	0.0142	4.0001	1.3884	44.2683	3823
JPY	Return	0.0003	0.6950	0.3626	8.0878	6393
	$\Delta \sqrt{IV}$	-0.0045	4.8257	1.0395	10.7764	3934
SPX	Return	0.0090	1.1803	-1.3584	32.9968	6521
	$\Delta \sqrt{VIX}$	0.0089	5.8997	0.5096	6.7502	3914

How important are these risks?

We quantify relative importance of the different sources of risk

Stochastic variance

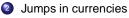


Jumps in variance

How important are these risks?

We quantify relative importance of the different sources of risk

Stochastic variance



- Jumps in variance
- We estimate a joint model of FX/IV using Bayesian MCMC
 - Main advantage: jump times and sizes are a by-product of estimation

Relation to Uncovered Interest Parity

- *s_t* is the log spot exchange rate
- ft is the log one-period forward exchange rate
- rt is the domestic, or low, one-period bond yield
- \tilde{r}_t is the foreign, or high, one-period bond yield

• UIP:

$$E_t(s_{t+1}-s_t)=f_t-s_t\equiv r_t-\tilde{r}_t$$

Fama's regression:

$$y_{t+1} = (s_{t+1} - s_t) - (r_t - \tilde{r}_t) = \alpha + \beta(r_t - \tilde{r}_t) + \varepsilon_{t+1}$$

• $\hat{\beta} \approx -3$, hence the puzzle

Relation to Uncovered Interest Parity

- *s_t* is the log spot exchange rate
- ft is the log one-period forward exchange rate
- rt is the domestic, or low, one-period bond yield
- \tilde{r}_t is the foreign, or high, one-period bond yield

• UIP:

$$E_t(s_{t+1}-s_t)=f_t-s_t\equiv r_t-\tilde{r}_t$$

• Fama's regression:

$$y_{t+1} = (s_{t+1} - s_t) - (r_t - \tilde{r}_t) = \alpha + \beta(r_t - \tilde{r}_t) + \varepsilon_{t+1}$$

- $\hat{\beta} \approx -3$, hence the puzzle
- This paper does not explain the puzzle
- This paper makes a first step by analysing ε_{t+1}

- Three types of jumps:
 - Variance: probability is affected by the variance itself
 - USD depreciation (up): probability is affected by the US interest rate
 - USD appreciation (down): probability is affected by the non-US interest rate

- Three types of jumps:
 - Variance: probability is affected by the variance itself
 - USD depreciation (up): probability is affected by the US interest rate
 - USD appreciation (down): probability is affected by the non-US interest rate
- Jumps in FX are connected to major macro and political news
- Jumps in variance are not "economic uncertainty"

- Three types of jumps:
 - Variance: probability is affected by the variance itself
 - USD depreciation (up): probability is affected by the US interest rate
 - USD appreciation (down): probability is affected by the non-US interest rate
- Jumps in FX are connected to major macro and political news
- Jumps in variance are not "economic uncertainty"
- Jumps contribute 25%, on average to the total currency risk; can be as high as 40%

- Three types of jumps:
 - Variance: probability is affected by the variance itself
 - USD depreciation (up): probability is affected by the US interest rate
 - USD appreciation (down): probability is affected by the non-US interest rate
- Jumps in FX are connected to major macro and political news
- Jumps in variance are not "economic uncertainty"
- Jumps contribute 25%, on average to the total currency risk; can be as high as 40%
- Estimated currency risk premiums are in conflict with baseline equilibrium models

Literature

$$y_{t+1} = \mu_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$$

$$y_{t+1} = \mu_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$$

$$v_{t+1} = (1-v)v + vv_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v [corr_t(w_{t+1}^s, w_{t+1}^v) = \rho]$$

$$\begin{aligned} y_{t+1} &= \mu_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \\ v_{t+1} &= (1-v)v + vv_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v [corr_t(w_{t+1}^s, w_{t+1}^v) = \rho] \\ h_t^k &= h_0^k + h_r^k r_t + \tilde{h}_r^k \tilde{r}_t + h_v^k v_t, \ k = u, d, v \text{ [jump intensity]} \\ z_t^k &\sim \mathcal{E} xp(\theta_k), \ k = u, d, v \text{ [jump size]} \end{aligned}$$

$$y_{t+1} = \mu_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$$

$$v_{t+1} = (1 - v)v + vv_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v [corr_t(w_{t+1}^s, w_{t+1}^v) = \rho]$$

$$h_t^k = h_0^k + h_r^k r_t + \tilde{h}_r^k \tilde{r}_t + h_v^k v_t, \ k = u, d, v \text{ [jump intensity]}$$

$$z_t^k \sim \mathcal{E} xp(\theta_k), \ k = u, d, v \text{ [jump size]}$$

$$\mu_t = \mu_0 + \mu_r r_t + \tilde{\mu}_r \tilde{r}_t + \mu_v v_t$$

Implied Variance

Implied Variance

- It is extremely hard to pin down the specification of jumps
- We also add information from options:

 $IV_t = \alpha_{iv} + \beta_{iv}v_t + \text{error}$

Implied Variance

- It is extremely hard to pin down the specification of jumps
- We also add information from options:

$$IV_t = \alpha_{iv} + \beta_{iv}v_t + \text{error}$$

 Use time-series of daily carry returns and one-month at-the-money IVs to estimate parameters and state realizations

$$y_{t+1} = \mu_0 + \mu_r(r_t - \tilde{r}_t) + \mu_v v_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$$

$$y_{t+1} = \mu_0 + \mu_r (r_t - \tilde{r}_t) + \mu_v v_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$$

$$v_{t+1} = (1 - v)v + vv_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v$$

$$y_{t+1} = \mu_0 + \mu_r (r_t - \tilde{r}_t) + \mu_v v_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$$

$$v_{t+1} = (1 - v)v + v_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v$$

$$h_t^u = h_0 + h_r r_t, \ h_t^d = h_0 + h_r \tilde{r}_t, \ h_t^v = h_0^v + h_v v_t$$

. /-

$$y_{t+1} = \mu_0 + \mu_r(r_t - \tilde{r}_t) + \mu_v v_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$$

$$v_{t+1} = (1 - v)v + vv_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v$$

$$h_t^u = h_0 + h_r r_t, \ h_t^d = h_0 + h_r \tilde{r}_t, \ h_t^v = h_0^v + h_v v_t$$

$$z_t^{u,d} \sim \mathcal{E} xp(\theta), \ z_t^v | j \sim \mathcal{E} xp(\theta_v)$$

$$y_{t+1} = \mu_0 + \mu_r(r_t - \tilde{r}_t) + \mu_v v_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$$

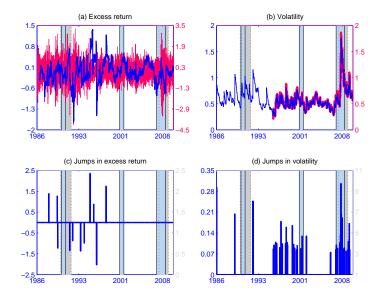
$$v_{t+1} = (1 - v)v + vv_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v$$

$$h_t^u = h_0 + h_r r_t, \ h_t^d = h_0 + h_r \tilde{r}_t, \ h_t^v = h_0^v + h_v v_t$$

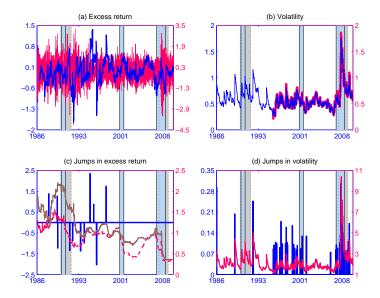
$$z_t^{u,d} \sim \mathcal{E} xp(\theta), \ z_t^v | j \sim \mathcal{E} xp(\theta_v)$$

- Implications:
 - On average, 1.3 to 2.6 jumps in variance per year; average jump size increases vol by 20% to 40%
 - On average, 0.4 to 1.3 jumps in currencies per year; average jumps size is 1.2% to 1.6%
 - Third cumulant $\kappa_{3t}(s_{t+1} s_t) = 6\theta^3 h_r(r_t \tilde{r}_t)$
 - The loading $\mu_r \approx -3$ as in Fama's regression

GBP excess returns, estimated states, jump intensities



GBP excess returns, estimated states, jump intensities



What is total risk?

- What is total risk?
- Variance, skewness, kurtosis, etc. capture different aspects of risk

- What is total risk?
- Variance, skewness, kurtosis, etc. capture different aspects of risk
- We use entropy (a.k.a. generalised variance):

$$L_t(S_{t+n}/S_t) = \log E_t(e^{s_{t+n}-s_t}) - E_t(s_{t+n}-s_t)$$

- What is total risk?
- Variance, skewness, kurtosis, etc. capture different aspects of risk
- We use entropy (a.k.a. generalised variance):

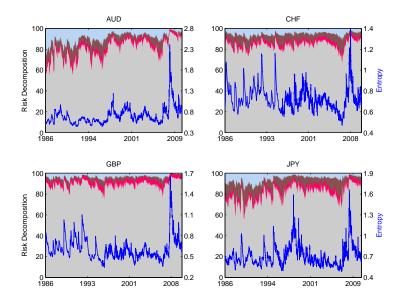
$$L_t(S_{t+n}/S_t) = \log E_t(e^{s_{t+n}-s_t}) - E_t(s_{t+n}-s_t)$$

Intuition:

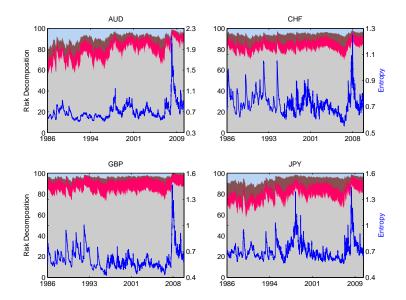
$$L_t = \kappa_{2t}(s_{t+n} - s_t)/2! + \kappa_{3t}(s_{t+n} - s_t)/3! + \kappa_{4t}(s_{t+n} - s_t)/4! + \dots,$$

where κ_j is the *j*th cumulant of $s_{t+n} - s_t$

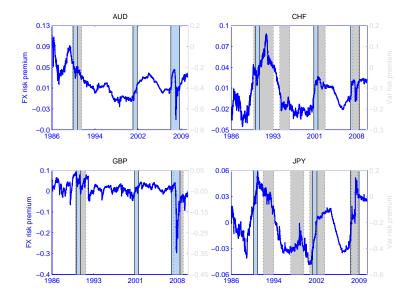
Decomposition of entropy



Decomposition of entropy

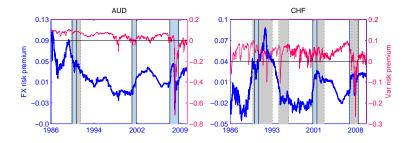


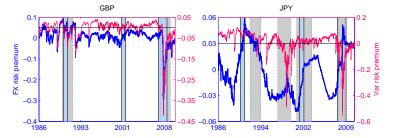
Risk Premiums



LSE

Risk Premiums





• What is the structure of fundamental shocks?

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates cannot assume this

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates cannot assume this
- What are jumps disasters or something else?

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates cannot assume this
- What are jumps disasters or something else?
- Probabilities of jumps in FX vs variance are different in economically meaningful way

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates cannot assume this
- What are jumps disasters or something else?
- Probabilities of jumps in FX vs variance are different in economically meaningful way
- Ex-ante FX risk premia from the non-US perspective do not conform to the basic intuition

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates cannot assume this
- What are jumps disasters or something else?
- Probabilities of jumps in FX vs variance are different in economically meaningful way
- Ex-ante FX risk premia from the non-US perspective do not conform to the basic intuition
- What is the economic mechanism generating the positive variance premiums?

Summary

Summary

- We study risks in carry returns
 - Identify and describe sources of risks
 - Measure risk premiums (RP)
 - Compare the dynamics of RP with the predictions of the structural models

Summary

- We study risks in carry returns
 - Identify and describe sources of risks
 - Measure risk premiums (RP)
 - Compare the dynamics of RP with the predictions of the structural models
- We find that
 - Both normal and jump risks are important
 - Jump risks have time-varying nature
 - Jumps in FX can be linked to news. Jumps in vol cannot
 - Jumps are not necessarily idiosyncratic
 - Estimated dynamics of RP pose challenges for structural models

Literature Review

- Joint currency/implied variance time-series analysis w/o jumps
 - Brandt and Santa-Clara (2002); Graveline (2006)
- Hedging jump risk with options
 - Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011); Jordà and Taylor (2009); Jurek (2009)
 - Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2009)
- Option-based models of currencies with jumps in FX only
 - Bates (1996); Carr and Wu (2007)
 - Bakshi, Carr, and Wu (2008)
- Equilibrium models of FX with jumps
 - Farhi and Gabaix (2008); Guo (2007); Plantin and Shin (2011)
- News and FX
 - Andersen, Bollerslev, Diebold, and Vega (2003)
- Jumps in variance of equity returns
 - Broadie, Chernov, and Johannes (2007); Duffie, Pan, and Singleton (2000); Eraker, Johannes, and Polson (2003)
- Entropy as generalised variance
 - Alvarez and Jermann (2005); Backus, Chernov, and Martin (2011); Backus, Chernov, and Zin (2011); Martin (2011)

 Back

Diagnostics: An AUD example

	SV	SVJV	SVJVC-P
skewness ^C	-0.3080	-0.3074	-0.2004
	(-0.3308, -0.2860)	(-0.3304, -0.2855)	(-0.2408, -0.1599)
kurtosis ^C	4.1472	4.0822	3.4892
	(4.0677, 4.2366)	(4.0006, 4.1810)	(3.3802, 3.6055)
autocorrelation ^C	-0.0281	-0.0271	-0.0324
	(-0.0311, -0.0252)	(-0.0303, -0.0241)	(-0.0406, -0.0242)
skewness ^{IV}	0.0402	0.0303	0.0310
	(-0.0373, 0.1181)	(-0.0466, 0.1070)	(-0.0459, 0.1080)
kurtosis ^{IV}	3.0618	3.0385	3.0375
	(2.9103, 3.2314)	(2.8902, 3.2034)	(2.8896, 3.2033)
autocorrelation ^{IV}	0.1043	0.0634	0.0637
	(0.0749, 0.1336)	(0.0331, 0.0937)	(0.0334, 0.0940)
IVvar	0.0064	0.0034	0.0034
	(0.0041, 0.0122)	(0.0021, 0.0070)	(0.0021, 0.0070)

Diagnostics: A CHF example

	SV	SVJV	SVJVC-P
skewness ^C	0.1178	0.1282	0.0586
	(0.0994, 0.1365)	(0.1078, 0.1486)	(0.0182, 0.0983)
kurtosis ^C	3.9497	3.9438	3.4333
	(3.8825, 4.0198)	(3.8919, 4.0011)	(3.3373, 3.5405)
autocorrelation ^C	-0.0203	-0.0198	-0.0272
	(-0.0227, -0.0179)	(-0.0226, -0.0170)	(-0.0352, -0.0192)
skewness ^{IV}	0.0224	0.0201	0.0210
	(-0.0574, 0.1022)	(-0.0585, 0.0985)	(-0.0573, 0.0995)
kurtosis ^{IV}	3.0648	3.0399	3.0406
	(2.9091, 3.2378)	(2.8887, 3.2097)	(2.8890, 3.2094)
autocorrelation ^{IV}	0.0777	0.0565	0.0564
	(0.0459, 0.1094)	(0.0247, 0.0883)	(0.0246, 0.0881)
IVvar	0.0010	0.0006	0.0006
	(0.0007, 0.0017)	(0.0004, 0.0011)	(0.0004, 0.0011)

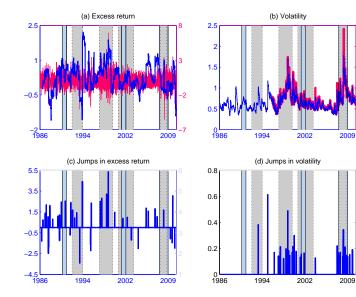
Diagnostics: A GBP example

	SV	SVJV	SVJVC-P
skewness ^C	-0.0407	-0.0211	-0.0232
	(-0.0606, -0.0202)	(-0.0436, 0.0012)	(-0.0609, 0.0143)
kurtosis ^C	3.9181	3.8540	3.4947
	(3.8427, 4.0061)	(3.7784, 3.9423)	(3.4006, 3.5969)
autocorrelation ^C	0.0009	0.0006	-0.0027
	(-0.0024, 0.0040)	(-0.0038, 0.0047)	(-0.0094, 0.0037)
skewness ^{IV}	0.0352	0.0212	0.0215
	(-0.0443, 0.1146)	(-0.0565, 0.0995)	(-0.0568, 0.0998)
kurtosis ^{IV}	3.0710	3.0293	3.0296
	(2.9160, 3.2461)	(2.8798, 3.1972)	(2.8786, 3.1977)
autocorrelation ^{IV}	0.0791	0.0510	0.0510
	(0.0483, 0.1096)	(0.0204, 0.0814)	(0.0204, 0.0815)
IVvar	0.0011	0.0004	0.0004
	(0.0007, 0.0019)	(0.0003, 0.0008)	(0.0003, 0.0008)

Diagnostics: A JPY example

	SV	SVJV	SVJVC-P
skewness ^C	0.3348	0.3360	0.1298
	(0.3060, 0.3650)	(0.3038, 0.3668)	(0.0799, 0.1800)
kurtosis ^C	4.8254	4.7148	3.6054
	(4.7109, 4.9645)	(4.5982, 4.8361)	(3.4829, 3.7445)
autocorrelation ^C	-0.0146	-0.0140	-0.0221
	(-0.0176 -0.0116)	(-0.0174, -0.0108)	(-0.0312, -0.0131)
skewness ^{IV}	0.0568	0.0278	0.0311
	(-0.0210, 0.1349)	(-0.0495, 0.1054)	(-0.0465, 0.1087)
kurtosis ^{IV}	3.0707	3.0430	3.0423
	(2.9175, 3.2420)	(2.8940, 3.2100)	(2.8923, 3.2098)
autocorrelation ^{IV}	0.1042	0.0758	0.0768
	(0.0733, 0.1349)	(0.0443, 0.1070)	(0.0453, 0.1083)
IVvar	0.0061	0.0029	0.0037
	(0.0036, 0.0125)	(0.0017, 0.0059)	(0.0021, 0.0078)

JPY excess returns, estimated states, jump intensities

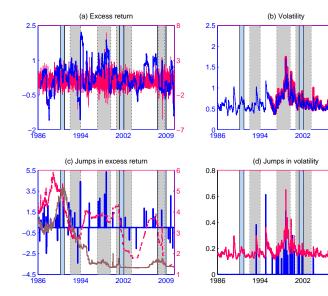


2.5

1.5

0.5

JPY excess returns, estimated states, jump intensities



2.5

1.5

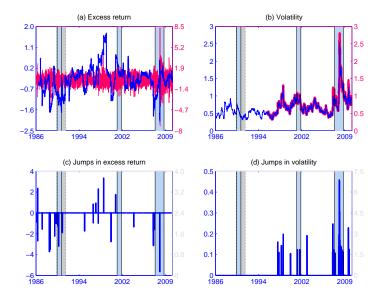
0.5

6

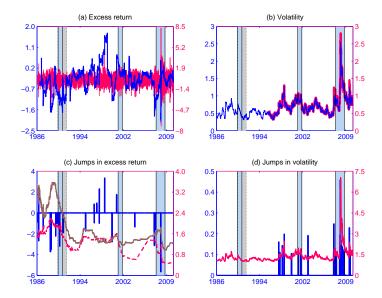
2009

2009

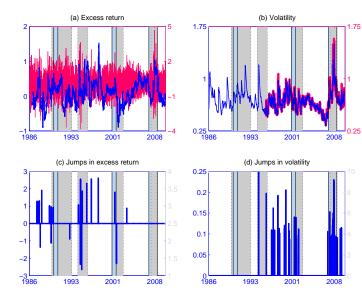
AUD excess returns, estimated states, jump intensities



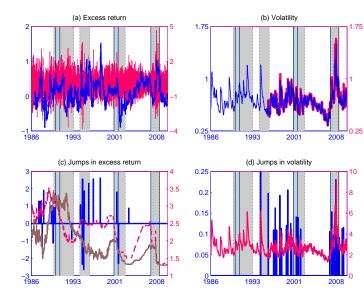
AUD excess returns, estimated states, jump intensities



CHF excess returns, estimated states, jump intensities



CHF excess returns, estimated states, jump intensities



- Alvarez, Fernando, and Urban Jermann, 2005, Using asset prices to measure the persistence of the marginal utility of wealth, *Econometrica* 73, 1977–2016.
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Clara Vega, 2003, Micro effects of macro announcements: Real-time price discovery in foreign exchange, *American Economic Review* 93, 38–62.
- Backus, David, Mikhail Chernov, and Ian Martin, 2011, Disasters implied by equity index options, *Journal of Finance* 66, 1967–2010.
- Backus, David, Mikhail Chernov, and Stanley Zin, 2011, Sources of entropy in representative agent models, Working paper, NBER.

Bibliography II

- Bakshi, Gurdip, Peter Carr, and Liuren Wu, 2008, Stochastic risk premiums, stochastic skewness in currency options, and stochastic discount factors in international economies, *Journal of Financial Economics* 87, 132–156.
- Bates, David S., 1996, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, *Review of Financial Studies* 9, 69–107.
- Brandt, Michael W., and Pedro Santa-Clara, 2002, Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets, *Journal of Financial Economics* 63, 161–210.
- Broadie, Mark, Mikhail Chernov, and Michael Johannes, 2007, Model specification and risk premia: Evidence from futures options, *Journal of Finance* 62, 1453–1490.

Bibliography III

- Burnside, Craig, Martin Eichenbaum, Isaac Kleshchelski, and Sergio Rebelo, 2011, Do peso problems explain the returns to the carry trade?, *Review of Financial Studies* 24, 853–891.
- Carr, Peter, and Liuren Wu, 2007, Stochastic skew in currency options, *Journal of Financial Economics* 86, 213–247.
- Duffie, Darrell, Jun Pan, and Kenneth Singleton, 2000, Transform analysis and asset pricing for affine jump-diffusions, *Econometrica* 68, 1343–1376.
- Eraker, Bjorn, Michael Johannes, and Nicholas Polson, 2003, The impact of jumps in volatility and returns, *Journal of Finance* 58, 1269–1300.
- Farhi, Emmanuel, Samuel P. Fraiberger, Xavier Gabaix, Romain Ranciere, and Adrien Verdelhan, 2009, Crash risk in currency markets, Working Paper.

Bibliography IV

- Farhi, Emmanuel, and Xavier Gabaix, 2008, Rare disasters and exchange rates, Working paper, NBER.
- Graveline, Jeremy J., 2006, Exchange rate volatility and the forward premium anomaly, Working paper.
- Guo, Kai, 2007, Exchange rates and asset prices in an open economy with rare disasters, Working Paper.
- Jordà, Òscar, and Alan M. Taylor, 2009, The carry trade and fundamentals: Nothing to fear but feer itself, Working Paper.
- Jurek, Jakub W., 2009, Crash-neutral currency carry trades, Working Paper.
- Martin, Ian, 2011, Simple variance swaps, Working paper.
- Plantin, Guillaume, and Hyun Song Shin, 2011, Carry trades, monetary policy and speculative dynamics, Working Paper.

