Continuous time option pricing with scheduled jumps in the underlying asset

by Dmitry Storcheus and Sergey Gelman

discussed by Mikhail Chernov (LSE and CEPR)

LFE conference, Moscow | November 2011

Background

- Jumps became a popular tool to capture extreme risks
 - October 1987 crash in US equities
 - September 1992 devaluation of GBP
 - The ongoing credit crisis

Background

- Jumps became a popular tool to capture extreme risks
 - October 1987 crash in US equities
 - September 1992 devaluation of GBP
 - The ongoing credit crisis
- Jumps can also capture event risk
 - Scheduled macro announcements
 - FOMC policy decisions
 - This paper: corporate earnings announcements

Earnings announcements and jumps

 We can use options to asses market's uncertainty about the outcome

- We can use options to asses market's uncertainty about the outcome
- Intuitively,
 - Suppose, the earnings announcement date is a
 - Implied volatility (IV), σ_{t,T}, is market's expectation of the average volatility realized between today, *t*, and time of maturity, *T* > *a*
 - Imagine there are no other announcements between t and T
 - What happens with expected realized average volatility as t → T?

- We can use options to asses market's uncertainty about the outcome
- Intuitively,
 - Suppose, the earnings announcement date is a
 - Implied volatility (IV), σ_{t,T}, is market's expectation of the average volatility realized between today, t, and time of maturity, T > a
 - Imagine there are no other announcements between t and T
 - What happens with expected realized average volatility as $t \rightarrow T$?
- Formally,
 - Black-Scholes: $\sigma_{t,T}^2 = \sigma^2$
 - Accounting for the scheduled announcement: $\sigma_{t,T}^2 = \sigma^2 + \frac{\sigma_a^2}{T-t}$

- We can use options to asses market's uncertainty about the outcome
- Intuitively,
 - Suppose, the earnings announcement date is a
 - Implied volatility (IV), σ_{t,T}, is market's expectation of the average volatility realized between today, t, and time of maturity, T > a
 - Imagine there are no other announcements between t and T
- What happens with expected realized average volatility as t → T?
 Formally,
 - Black-Scholes: $\sigma_{t,T}^2 = \sigma^2$
 - Accounting for the scheduled announcement: $\sigma_{t,T}^2 = \sigma^2 + \frac{\sigma_a^2}{T-t}$
- Thus,
 - An option IV increases prior to the earnings announcement as $t \to {\cal T}$
 - IV falls after the earnings announcement: the change in IV gives ex-post measure of the uncertainty
 - IV decreases with maturity: the term spread gives ex-ante measure of the uncertainty

Summary of the paper

- The authors propose a specific model of deterministic jumps
- Provide analysis of hedge ratios
- Empirically test the models against Black-Scholes (no jumps) and Merton (random jumps)
 - Data: AAPL, MSFT, CSCO, INTC, and AMD from 1999 2008
 - Re-estimate the models every year to allow for out-of-sample analysis
 - The model outperforms BS and M in terms of mean-square error
 - Average $\sigma_a = 8\%$ [range from 3% to 17%] per day
- The evidence is overall supportive of the model with deterministic jumps

Comments

Model

- The deterministic jump sizes are assumed to be uniformly distributed
- Because of the no-arbitrage restrictions (absolute continuity of P and Q measures), the distribution must be the same under P and Q
- Implication: no risk premium for announcement uncertainty
- Consider specifications with infinite support (e.g., normal jump sizes)
- Consider more realistic features (e.g., stochastic volatility)

Comments

Model

- The deterministic jump sizes are assumed to be uniformly distributed
- Because of the no-arbitrage restrictions (absolute continuity of P and Q measures), the distribution must be the same under P and Q
- Implication: no risk premium for announcement uncertainty
- Consider specifications with infinite support (e.g., normal jump sizes)
- Consider more realistic features (e.g., stochastic volatility)
- Empirics
 - Time-series analysis: how is σ_a related to macro environment?
 - Cross-sectional analysis: compare ex-ante and ex-post measures of uncertainty
 - Study some other industries to see how σ_a is affected

Conclusion

- Is it important to take into account scheduled announcements?
 - Yes. Economic and quantitative implications seem to be of first-order.

Conclusion

- Is it important to take into account scheduled announcements?
 - Yes. Economic and quantitative implications seem to be of first-order.
- Do we understand the behaviour of economic uncertainty better?
 - Not yet.

Conclusion

- Is it important to take into account scheduled announcements?
 - Yes. Economic and quantitative implications seem to be of first-order.
- Do we understand the behaviour of economic uncertainty better?
 Not yet.
- Is the risk of uncertainty priced?
 - The presented model does not allow to asses this

