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PROBLEM

WHEN DOES INFORMATION ABOUT A THE

UNCONDITIONAL VALUE OF A CHOICE TELL YOU ABOUT

ITS SELECTION CONDITIONED VALUE

Consider the problem of a trader who believes that, on average, outside
CEOs generate more value than inside CEOs

The trader has private information that the CEO selected by a specific
firm is an outsider. That’s all he knows about the CEO candidate

He also knows that firm knows CEO quality and is selecting the CEO
candidate who will maximize value

Will the trader profit from buying shares in the firm?
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PROBLEM

WHAT DOES THE CONDITIONAL VALUE TELL YOU

ABOUT THE UNCONDITIONAL VALUE

Consider a problem of a real-estate economist

The economist observes that first-time home buyers on average pay more
than real estate professionals for houses

Does this imply that first-time buyers on average submit higher bids?
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PROBLEM

GENERAL PROBLEM: SAMPLE SELECTION BIAS

Making an inference from a selected sample about the underlying
population, or vice versa
Standard approaches to sample-selection bias when making inferences
from selected sample to population

I Quantitative: Attempt through IV, two-stage least squares (inter alia,
Heckman, 1979) to derive point estimates of for population parameters
from selected sub-population

I Parametric: Impose specific distributional assumptions on error terms
I Statistical: Concerned with inference from the selected sample to the

population not from the population to the sample
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PROBLEM

THIS PAPER’S APPROACH

Qualitative: When does selection effect the direction of inference: can a
better population generate a worse subsample?

Non-parametric: Better and worse not defined based on any parameter of
the distribution but rather by stochastic dominance
Bi-directional: Conditions were both

I Sample distribution’s dominance implies the population distribution’s
dominance

I Population distribution’s dominance implies sample distribution’s
dominance

Selection into the sample is competitive: selection is made by a value
maximizing agent.
Unusual approach to say the least. Distant relative

I Manski (AER, 1990) distribution-free bounds the maximal size of
selection effects when the treatment variable is dichotomous.
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EXAMPLE: OXFORD VS. CAMBRIDGE

ASSUMPTIONS

GS hires only from Oxbridge

For each position, it interviews one Oxford candidate and one
Cambridge Candidate

It selects the best candidate and pays compensation based on ability

Ability for Oxbridge candidates ranges from 0 to 1.

The distribution of ability is different at Oxford and Cambridge
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EXAMPLE: OXFORD VS. CAMBRIDGE

SPECIFICS

Ability distributions:
I Oxford: Simple and elegant

FOxford(a) := a, a ∈ [0,1] (1)

I Cambridge: Obtuse and complex

FCambridge(a) :=
√

3sin

(
1
3

tan−1

(√
(2−a)a
1−a

))
−

cos

(
1
3

tan−1

(√
(2−a)a
1−a

))
+1, a ∈ [0,1] (2)

Value of new hires (in thousands) as a function of ability, a

V(a) := 50+150a (3)
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EXAMPLE: OXFORD VS. CAMBRIDGE

QUESTION

Salary survey results show that the mean salary of Oxbridge graduates
hired by GS are as follows:

I Oxford: £141,500
I Cambridge:£144,500

Ignoring issues of sample size (or assuming that GS hires and infinite
number of associates!)

I Can we infer from this evidence that Cambridge students are more able
than Oxford students?

I Should GS hire more Cambridge grads?
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EXAMPLE: OXFORD VS. CAMBRIDGE

OXBRIDGE CDF OF ABILITY

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ability

CDF of ability distribution

ΜHOxfordL=0.50, ΜHCambridgeL=0.40

Oxford
Cambridge
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EXAMPLE: OXFORD VS. CAMBRIDGE

OXBRIDGE PDF OF ABILITY

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.8

1.0

1.2

1.4

Ability

PDF of ability distribution

ΜHOxfordL=0.50, ΜHCambridgeL=0.40

Oxford

Cambridge

T. NOE (SBS/BALLIOL) SELECTION BIAS 8TH NOVEMBER 2013 12 / 57



EXAMPLE: OXFORD VS. CAMBRIDGE

SIMULATED COMPETITION: BLUE VS. BLUE
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MOTIVATION

OUTLINE

1 PROBLEM

2 EXAMPLE: OXFORD VS. CAMBRIDGE

3 MOTIVATION

4 SELECTION DOMINANCE

5 THREE “FLAVORS” OF GEOMETRIC DOMINANCE
Sketch of proof

6 PDFS AND GEOMETRIC DOMINANCE
7 ”GOOD” GEOMETRIC DOMINANCE: POSITIVE GEOMETRIC

DOMINANCE
8 ”BAD” GEOMETRIC DOMINANCE: NEGATIVE GEOMETRIC

DOMINANCE

9 ”UGLY” GEOMETRIC DOMINANCE
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MOTIVATION

SUMMARY OF EXAMPLE

Oxford student quality stochastically dominates Cambridge student
quality

In fact, Oxford dominates Cambridge in the MLRP ordering

But, conditioned on selection by GS, Cambridge student earn more.

In fact, given any increasing value function, the selection conditioned
sample of Cambridge students will have a higher expected value!

i.e., conditioned on selection, Cambridge students stochastically
dominate Oxford students
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MOTIVATION

OBJECTIVES

Determine the conditions under which one distribution dominates
another after conditioning on competitive selection

Determine when dominance relations are reversed (as in the Oxbridge
example) and preserved

Relate the conditions for selection dominance to standard statistical
orderings and textbook statistical distributions
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MOTIVATION

TOOLS

Two new “order relations” over distributions which characterize
selection dominance
Supermuiplicativity on average

I Necessary and sufficient condition for selection dominance
I But a rather ill-behaved relation over distributions: Not even transitive
I Difficult to relate to shape of CDF/PDF

Geometric dominance
I Sufficient condition for selection dominance
I “MLRP” plotted on log-log paper
I For distributions with densities, can be defined based on the ratio the

densities of the log CDF
I Neither implied nor is implied by any standard statistical ordering of

distributions (e.g. stochastic dominance, MLRP, hazard rate ordering)
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SELECTION DOMINANCE

OUTLINE

1 PROBLEM

2 EXAMPLE: OXFORD VS. CAMBRIDGE

3 MOTIVATION

4 SELECTION DOMINANCE

5 THREE “FLAVORS” OF GEOMETRIC DOMINANCE
Sketch of proof

6 PDFS AND GEOMETRIC DOMINANCE
7 ”GOOD” GEOMETRIC DOMINANCE: POSITIVE GEOMETRIC

DOMINANCE
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SELECTION DOMINANCE

DEFINITIONS

SELECTION DOMINANCE

We say that X̃ (or its distribution function F) selection dominates Ỹ (or its
distribution function G) if, for all increasing functions v,

E[v(X̃)|X̃ > Ỹ]≥ E[v(Ỹ)|Ỹ > X̃].
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SELECTION DOMINANCE

DEFINITIONS

THE u TRANSFORM

Let X̃ be a r.v. with distribution function F; Let Ỹ be a r.v. with
distribution function G

Let G−1 be the generalized inverse of G, i.e., G’s quantile function.

Then the transform function, u, associated with F and G is defined by

u(t) = F(G−1(t)), t ∈ [0,1]
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SELECTION DOMINANCE

DEFINITIONS

SUPERMULTIPLICATIVE ON AVERAGE

Let u = F ◦G−1; if

For all t ∈ (0,1),
∫ 1

0

(
u(t s)−u(s)u(t)

)
ds≥ 0. (4)

then u is supermultiplicative on average.

GEOMETRIC CONVEXITY

Let u(t) = F ◦G−1(t); if logu(t) is a convex function of log(t), then u is
geometrically convex
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SELECTION DOMINANCE

OBSERVATIONS

u being geometrically convex does not imply that u is convex

u being convex does not imply that u is geometrically convex

u being log convex implies that u is both convex and geometrically
convex

Geometric convexity is equivalent to the function, û defined by

û(y) = log◦u◦ exp(y),y≤ 0

being convex, i.e., u being convex when plotted on log-log graph paper

Geometric convexity implies that u is supermultiplicative and thus a
fortiori supermultiplicative on average.

T. NOE (SBS/BALLIOL) SELECTION BIAS 8TH NOVEMBER 2013 22 / 57



SELECTION DOMINANCE

OBSERVATIONS

u being geometrically convex does not imply that u is convex

u being convex does not imply that u is geometrically convex

u being log convex implies that u is both convex and geometrically
convex

Geometric convexity is equivalent to the function, û defined by
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SELECTION DOMINANCE

RESULTS: BASIC CHARACTERIZATIONS OF SELECTION

DOMINANCE

F selection dominates G if and only if u = F ◦G−1 is supermultiplicative
on average.

If u = F ◦G1 is geometrically convex, then F selection dominates G.
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SELECTION DOMINANCE

RESULTS: SELECTION EQUIVALENCE

If F selection dominates G and G selection dominates F then F and G
are selection equivalent

Selection equivalence implies that, conditioned on selection, the
expectation of any increasing value function is the same under F and G

When the distributions are selection equivalent, the “superiority” of the
stochastically dominant distribution is reflected entirely in its higher
probability of being selected. Its expected value, conditioned on
selection, is the same as the dominated distribution.

Examples: Gumbel (Extreme value Type I) distributions (Used in to
model latent variables in Logit models) that differ by a scale term are
selection equivalent as are Fréchet distributions that differ only with
respect to their scale parameters.
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SELECTION DOMINANCE

SELECTION EQUIVALENCE

SELECTION EQUIVALENCE CONDITIONS

For an admissible pair of distributions functions, F and G, the following
statements are equivalent:

(I) F and G are geometrically equivalent, i.e., u = F ◦G−1 is geometrically
linear

(II) F and G are selection equivalent

(III) F(x) = G(x)p for some p > 0.
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SELECTION DOMINANCE

GEOMETRIC CONVEXITY AND SELECTION DOMINANCE

AS ORDER RELATIONS

Selection dominance is not a transitive relation, F can selection dominate
G and G selection dominate H but F not selection dominate H

The geometric dominance relation is a pre-order over distributions
functions and thus is transitive.
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THREE “FLAVORS” OF GEOMETRIC DOMINANCE

OUTLINE

1 PROBLEM

2 EXAMPLE: OXFORD VS. CAMBRIDGE

3 MOTIVATION

4 SELECTION DOMINANCE

5 THREE “FLAVORS” OF GEOMETRIC DOMINANCE
Sketch of proof

6 PDFS AND GEOMETRIC DOMINANCE
7 ”GOOD” GEOMETRIC DOMINANCE: POSITIVE GEOMETRIC

DOMINANCE
8 ”BAD” GEOMETRIC DOMINANCE: NEGATIVE GEOMETRIC

DOMINANCE

9 ”UGLY” GEOMETRIC DOMINANCE
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THREE “FLAVORS” OF GEOMETRIC DOMINANCE

CHARACTERIZING THE u TRANSFORM UNDER

GEOMETRIC DOMINANCE

CROSSINGS OF F AND G
Suppose that F and G are an admissible pair of distributions and let
u = F ◦G−1. Suppose that F strictly geometrically dominates G, i.e, that u is
strictly geometrically convex.

(I) If, on some neighborhood of x, F(x)< G(x), then for all x ∈ (x, x̄),
F(x)< G(x), and thus F strictly stochastically dominates G

(II) If, on some neighborhood of x, F(x)> G(x), then either
(A) F(x)> G(x) for all x ∈ (x, x̄) and thus G strictly stochastically dominates

F, or
(B) There exists a point xo ∈ (x, x̄) such that for all x ∈ (x,xo), F(x)> G(x)

and for all x ∈ (xo, x̄), F(x)< G(x).
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THREE “FLAVORS” OF GEOMETRIC DOMINANCE

SKETCH OF PROOF FOR CASE I.

y

îd(
y)
=

y

0

û(y)

F(x)< G(x)
near x̄, then
û(y)< y in
nbhd. of −∞

û(0) = 0

û is strictly
convex

Therefore
û(y)< y,
y < 0
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û(y)< y,
y < 0

T. NOE (SBS/BALLIOL) SELECTION BIAS 8TH NOVEMBER 2013 29 / 57



THREE “FLAVORS” OF GEOMETRIC DOMINANCE

SKETCH OF PROOF FOR CASE I.

y
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û(0) = 0
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THREE “FLAVORS” OF GEOMETRIC DOMINANCE

SKETCH OF PROOF FOR CASE II.

y

îd(
y)
=

y

0

û1(y)
û2(y)

F(x)> G(x)
near x̄, then
û(y)> y in
nbhd. of −∞

û(0) = 0

û is strictly
convex

Therefore,
û(y) = y for
y < 0 at most
once.
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û(0) = 0
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THREE “FLAVORS” OF GEOMETRIC DOMINANCE

CHARACTERIZING THE u TRANSFORM UNDER

GEOMETRIC DOMINANCE

SHAPE OF THE u TRANSFORM

Assume that F strictly geometrically dominates G. Then, one of the following
three mutually exclusive characterizations of the distributions and transform
function must hold.

1 F(x)< G(x)x ∈ (x, x̄), and u is strictly convex.
2 F(x)> G(x)x ∈ (x, x̄) then t→ u(t)/t is decreasing and lim

t→0
u(t)/t = ∞.

3 On some neighborhood of x, F(x)> G(x) and on some neighborhood of
x̄, F(x)< G(x). Then then there exists to ∈ (0,1) with u(to)≤ to, such
that t→ u(t)/t is decreasing for t ≤ to and lim

t→0
u(t)/t = ∞ and, for t > to,

u is strictly convex.
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THREE “FLAVORS” OF GEOMETRIC DOMINANCE

SUMMARY

If F strictly geometrically dominates G then either
I Good: F is also stochastically dominant and u is convex.
I Bad: F is stochastically dominated, and u(t)/t explodes as t→ 0.
I Ugly: F crosses G once from above, and u is convex for t sufficiently large

and u(t)/t explodes as t→ 0. F is dispersion increasing.

T. NOE (SBS/BALLIOL) SELECTION BIAS 8TH NOVEMBER 2013 32 / 57



THREE “FLAVORS” OF GEOMETRIC DOMINANCE

SUMMARY

If F strictly geometrically dominates G then either
I Good: F is also stochastically dominant and u is convex.
I Bad: F is stochastically dominated, and u(t)/t explodes as t→ 0.
I Ugly: F crosses G once from above, and u is convex for t sufficiently large

and u(t)/t explodes as t→ 0. F is dispersion increasing.

T. NOE (SBS/BALLIOL) SELECTION BIAS 8TH NOVEMBER 2013 32 / 57



THREE “FLAVORS” OF GEOMETRIC DOMINANCE

SUMMARY

If F strictly geometrically dominates G then either
I Good: F is also stochastically dominant and u is convex.
I Bad: F is stochastically dominated, and u(t)/t explodes as t→ 0.
I Ugly: F crosses G once from above, and u is convex for t sufficiently large

and u(t)/t explodes as t→ 0. F is dispersion increasing.

T. NOE (SBS/BALLIOL) SELECTION BIAS 8TH NOVEMBER 2013 32 / 57



THREE “FLAVORS” OF GEOMETRIC DOMINANCE

SUMMARY

If F strictly geometrically dominates G then either
I Good: F is also stochastically dominant and u is convex.
I Bad: F is stochastically dominated, and u(t)/t explodes as t→ 0.
I Ugly: F crosses G once from above, and u is convex for t sufficiently large

and u(t)/t explodes as t→ 0. F is dispersion increasing.

T. NOE (SBS/BALLIOL) SELECTION BIAS 8TH NOVEMBER 2013 32 / 57



THREE “FLAVORS” OF GEOMETRIC DOMINANCE SKETCH OF PROOF

RELATION BETWEEN SHAPE OF u AND v̂

Let
v̂(y) = û(y)− y, y≤ 0.

Note that
u(t) = t exp[v̂(log(t))]

Therefore,

u′(t) = exp[v̂(log(t))]+ exp[v̂(log(t))] v̂′(t) (5)

v̂′(t) is ↑ because v̂ is strictly convex

If v̂ is ↑ ⇒ u′ is ↑, i.e. u is convex

If v̂ is ↓ ⇒ u(t)/t is ↓
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THREE “FLAVORS” OF GEOMETRIC DOMINANCE SKETCH OF PROOF

v̂(t)< 0⇒ v̂ IS ↑

y
0

v̂(yo)+ v̂ ′(yo)(y− yo)

v̂(yo)

v̂(y)

v̂(y)

v̂ < 0, y < 0
and

v̂ convex,
implies

v̂ cannot
decrease,
otherwise

For y
sufficiently
small,
v̂(y)> 0
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THREE “FLAVORS” OF GEOMETRIC DOMINANCE SKETCH OF PROOF

v̂(t)> 0⇒ v̂ IS ↓

y
0

v̂(yo)+ v̂′(yo)(y− yo)

v̂(yo)

v̂(y)

v̂ > 0, y < 0,
and

v̂ convex,

v̂ cannot
increase

otherwise,
v̂(0)> 0
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PDFS AND GEOMETRIC DOMINANCE

OUTLINE

1 PROBLEM

2 EXAMPLE: OXFORD VS. CAMBRIDGE

3 MOTIVATION

4 SELECTION DOMINANCE

5 THREE “FLAVORS” OF GEOMETRIC DOMINANCE
Sketch of proof

6 PDFS AND GEOMETRIC DOMINANCE
7 ”GOOD” GEOMETRIC DOMINANCE: POSITIVE GEOMETRIC

DOMINANCE
8 ”BAD” GEOMETRIC DOMINANCE: NEGATIVE GEOMETRIC

DOMINANCE

9 ”UGLY” GEOMETRIC DOMINANCE
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PDFS AND GEOMETRIC DOMINANCE

PDF CHARACTERIZATIONS

GEOMETRIC CONVEXITY IN TERMS OF PDFS

Suppose that F and G are regularly related and u = F ◦G−1.
1 u is (strictly) convex if and only if x→ f (x)/g(x) is (increasing)

nondecreasing over (x, x̄), i.e. F dominates G in the MLRP order.
2 u is (strictly) geometrically convex if and only if x→ f (x)

g(x)
G(x)
F(x) is

(increasing) nondecreasing over (x, x̄).
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“GOOD” GEOMETRIC DOMINANCE

OUTLINE

1 PROBLEM

2 EXAMPLE: OXFORD VS. CAMBRIDGE

3 MOTIVATION

4 SELECTION DOMINANCE

5 THREE “FLAVORS” OF GEOMETRIC DOMINANCE
Sketch of proof
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“GOOD” GEOMETRIC DOMINANCE

DEFINITIONS AND RESULTS

If X̃ with distribution function F dominates r.v. Ỹ with distribution
function G in both the stochastic dominance ordering and the geometric
dominance ordering, then F is positively geometrically dominant.
When F is positively geometrically dominant with respect to G, then

1 X̃ selection dominates Ỹ , i.e., for any increasing valuation function, v,
E[v(X̃)|X̃ > Ỹ]≥ E[v(Ỹ)|Ỹ > X̃].

2 X̃ dominates Ỹ in the MLRP ordering.
3 The probability that X̃ will be selected is higher, i.e.,P[X̃ > Ỹ]≥ 1/2.
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“GOOD” GEOMETRIC DOMINANCE

WHEN DOES STRICT POSITIVE GEOMETRIC DOMINANCE

OCCUR?

Most (all?) textbook statistical distributions when the two distributions
being compared come from the same family and differ only with respect
to a parameter which represents and additive or multiplicative shift, e.g.,

I Normal distributions with a common variance
I Lognormal distributions with a common log variance
I Logistic and log-logistic distributions with a common shape parameter
I Weibull distributions with a common shape parameter

It is possible to construct scale shifts which do not lead to geometric
dominance but it is not easy

When the “scale parameter” is not a multiplicative or additive shift,
positive dominance may fail.
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“GOOD” GEOMETRIC DOMINANCE

IMPLICATIONS

If you are comparing two populations, A and B and the
I Population distributions in your problem are follow textbook statistical

distributions
I The populations vary with respect to a scale parameter

The mean value of population A will exceed the mean value of
population B if and only if the mean of the competitively selected
subsample of A exceeds the mean of the competitively selected
subsample of B.
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”BAD” GEOMETRIC DOMINANCE

OUTLINE

1 PROBLEM

2 EXAMPLE: OXFORD VS. CAMBRIDGE

3 MOTIVATION

4 SELECTION DOMINANCE

5 THREE “FLAVORS” OF GEOMETRIC DOMINANCE
Sketch of proof

6 PDFS AND GEOMETRIC DOMINANCE
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8 ”BAD” GEOMETRIC DOMINANCE: NEGATIVE GEOMETRIC

DOMINANCE
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”BAD” GEOMETRIC DOMINANCE

DEFINITIONS AND RESULTS

If X̃ with distribution function F dominates r.v. Ỹ with distribution
function G with respect to geometric dominance but G dominates F with
respect to stochastic dominance, then F is negatively geometrically
dominant.
When F is negatively geometrically dominant with respect to G, then

1 X̃ selection dominates Ỹ , i.e., for any increasing valuation function, v,
E[v(X̃)|X̃ > Ỹ]≥ E[v(Ỹ)|Ỹ > X̃]

2 The ratio F/G is non-increasing.
3 If F strictly negatively geometrically dominates G, then F/G is decreasing

and

lim
x→x

F(x)
G(x)

= lim
x→x

f (x)
g(x)

= ∞.

4 The probability that X̃ will be selected is lower, i.e.,P[X̃ > Ỹ]≤ 1/2.
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T. NOE (SBS/BALLIOL) SELECTION BIAS 8TH NOVEMBER 2013 43 / 57



”BAD” GEOMETRIC DOMINANCE

DEFINITIONS AND RESULTS

If X̃ with distribution function F dominates r.v. Ỹ with distribution
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function G with respect to geometric dominance but G dominates F with
respect to stochastic dominance, then F is negatively geometrically
dominant.
When F is negatively geometrically dominant with respect to G, then
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”BAD” GEOMETRIC DOMINANCE

EFFECT OF THE LEFT-TAIL EXPLOSION

In a competitive selection context, the left tail explosion of the
geometrically dominant distribution increases its selection-conditioned
value for two reasons:

1 Censorship effect: Left tail realizations are very unlikely to be selected
and thus will be censored out of the selection-conditioned distribution,
raising its conditional value

2 Admission effect: Left tail realizations “admit” low realizations of the rival
random variable into the selection-conditioned sample, lowering the rival
distribution’s conditional value.

Under fixed-criteria selection, there is a censorship effect but no
admission effect—an MLRP dominated distribution can never be
selection dominant

Under competitive selection, an MLRP dominated distribution can be
selection dominant.
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”BAD” GEOMETRIC DOMINANCE

WHEN DOES STRICT NEGATIVE GEOMETRIC DOMINANCE

OCCUR?

We know it can happen: See the Oxford–Cambridge example

Occurs sometimes with textbook statistical distributions when the scale
parameter is not multiplicative or additive shift

Example: Kumaraswamy distribution, with common shape parameter
b < 1.

Specific case: Kumaraswamy distribution, where the for both F and G
the shape parameter is b = 1/2, and the scale parameters = are αF = 1,
and αG = 2. The two distributions corresponding to αF and αB, F and G,
are

F(x) = 1−
√

1− x, G(x) = 1−
√

1− x2.
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Occurs sometimes with textbook statistical distributions when the scale
parameter is not multiplicative or additive shift

Example: Kumaraswamy distribution, with common shape parameter
b < 1.

Specific case: Kumaraswamy distribution, where the for both F and G
the shape parameter is b = 1/2, and the scale parameters = are αF = 1,
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”BAD” GEOMETRIC DOMINANCE

CDFS OF FOR THE KUMARASWAMY EXAMPLE
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”BAD” GEOMETRIC DOMINANCE

PDFS OF FOR THE KUMARASWAMY EXAMPLE
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”BAD” GEOMETRIC DOMINANCE

LOWER-TAIL RATIO EXPLOSION
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”BAD” GEOMETRIC DOMINANCE

KUMARASWAMY: NEGATIVE GEOMETRIC DOMINANCE
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”BAD” GEOMETRIC DOMINANCE

KUMARASWAMY: u AND û FUNCTION
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”UGLY” GEOMETRIC DOMINANCE

OUTLINE

1 PROBLEM

2 EXAMPLE: OXFORD VS. CAMBRIDGE

3 MOTIVATION

4 SELECTION DOMINANCE

5 THREE “FLAVORS” OF GEOMETRIC DOMINANCE
Sketch of proof

6 PDFS AND GEOMETRIC DOMINANCE
7 ”GOOD” GEOMETRIC DOMINANCE: POSITIVE GEOMETRIC

DOMINANCE
8 ”BAD” GEOMETRIC DOMINANCE: NEGATIVE GEOMETRIC

DOMINANCE

9 ”UGLY” GEOMETRIC DOMINANCE
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”UGLY” GEOMETRIC DOMINANCE

SELECTION DOMINANCE INDUCED BY DISPERSION

When F is selection dominant with respect to G but neither stochastically
dominant nor stochastically dominant, then
F crosses G once from above
F behaves like a negatively dominant distributions in its lower tail, (i.e.,
lower-tail ratio (F/G explosion) and like a positively dominant
distribution in its upper tail (f/g increasing)
Both the left tail censoring generated by the left tail ratio explosion and
MLRP dominance at the upper tail favor selection dominance
Therefore, the selection conditioned value of geometrically dominant
distribution can be much higher than the dominated distribution’s value
Example:

F(x) =

{
e−c
√

1
x x ∈ (0,1]

0 x = 0
, c > 0, G(x) = x, x ∈ [0,1].
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”UGLY” GEOMETRIC DOMINANCE

u AND û FUNCTIONS

u(t) =

{
e−c
√

1
x x ∈ (0,1]

0 x = 0
; û(t) =−c

√
−y, y ∈ (−∞,0].
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”UGLY” GEOMETRIC DOMINANCE

u AND û FUNCTIONS WHEN c = 0.70
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”UGLY” GEOMETRIC DOMINANCE

CDFS WHEN c = 0.70
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”UGLY” GEOMETRIC DOMINANCE

PDFS WHEN c = 0.70
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”UGLY” GEOMETRIC DOMINANCE

ILLUSTRATION OF SELECTION DOMINANCE RESULTING

FROM DISPERSION

E[X̃|X̃ > Ỹ] = 0.7784 E[Ỹ|Ỹ > X̃] = 0.5854

P[X̃ > Ỹ] = 0.4352 P[Ỹ > X̃] = 0.5648

E[X̃] = 0.4352 E[Ỹ] = 0.5000

TABLE : Expected payoffs under selection when geometrically dominant distribution
is dispersive. In the table, X̃ ∼ F and Ỹ ∼ G, c = 0.70
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