THE EFFECTS OF EXPERIENCE ON INVESTOR BEHAVIOR

Evidence from India's IPO Lotteries

Santosh Anagol

Wharton

Vimal Balasubramaniam Oxford

Tarun Ramadorai Oxford and CEPR

November 2015

Motivation

- Standard economic models predict negligible role for personal experience in future decision making.
 - Especially in high public information environments (e.g., stock market).
- Newer models explore implications of personal experience:
 - Reinforcement learning Roth and Erev (1995).
 - ▶ Reference dependent risk-attitudes Koszegi and Rabin (2007).

Motivation

- Standard economic models predict negligible role for personal experience in future decision making.
 - Especially in high public information environments (e.g., stock market).
- Newer models explore implications of personal experience:
 - Reinforcement learning Roth and Erev (1995).
 - ▶ Reference dependent risk-attitudes Koszegi and Rabin (2007).
- Empirical literature suggests personal experience is important:
 - Long-term: Experiences of Great Depression lowers risk-taking -Malmendier and Nagel (2007).
 - Short-term: Portfolio experiences correlate with future decisions -Barber and Odean (2013).
- Challenge: Personal experiences are endogenous with observed changes in behaviour.
 - Changing skill, beliefs, preferences, rational learning.

This Paper

- ▶ New research design to estimate experience effects.
 - Randomized variation in portfolio experiences from Initial Public Offering (IPO) lottery outcomes.
 - IPO lottery method could be applied to many other contexts. Countries: Brazil, China, Germany, Hong Kong, Singapore, Sweden, Taiwan; U.S. brokerages (TD Ameritrade, Fidelity).
- New facts on how experiences cause changes in investment behavior.

This Paper

- ▶ New research design to estimate experience effects.
 - Randomized variation in portfolio experiences from Initial Public Offering (IPO) lottery outcomes.
 - IPO lottery method could be applied to many other contexts. Countries: Brazil, China, Germany, Hong Kong, Singapore, Sweden, Taiwan; U.S. brokerages (TD Ameritrade, Fidelity).
- New facts on how experiences cause changes in investment behavior.
- Very high level of detail allows precise estimates of heterogeneous effects; better understanding of mechanisms:
 - Across stocks: Spillover effects to rest of portfolio ("within portfolio contagion").
 - Strength of the experimental approach, greater confidence as domain of effects widens.
 - Across (1.5 MM) investors: Effects significant even with small treatments for large/experienced investor portfolios.

The Indian IPO Lottery Process: Allocations

Firm chooses issue price, implies subscription ratio:

 $r = \frac{\text{Retail Demand}}{\text{Retail Supply}}$

- Three possible outcomes after issue price chosen:
 - r ≤ 1
 - ▶ \rightarrow All retail bidders get allocated (no lotteries).

The Indian IPO Lottery Process: Allocations

Firm chooses issue price, implies subscription ratio:

 $r = \frac{\text{Retail Demand}}{\text{Retail Supply}}$

- Three possible outcomes after issue price chosen:
 - r ≤ 1
 - ▶ \rightarrow All retail bidders get allocated (no lotteries).
 - *r* > 1, and proportional allocation leads to all retail bidders receiving ≥ min lot size.
 - $\blacktriangleright \rightarrow$ Retail bidders are allocated proportionally (no lotteries).

The Indian IPO Lottery Process: Allocations

Firm chooses issue price, implies subscription ratio:

 $r = \frac{\text{Retail Demand}}{\text{Retail Supply}}$

- Three possible outcomes after issue price chosen:
 - r ≤ 1
 - ▶ \rightarrow All retail bidders get allocated (no lotteries).
 - *r* > 1, and proportional allocation leads to all retail bidders receiving ≥ min lot size.
 - $\blacktriangleright \rightarrow$ Retail bidders are allocated proportionally (no lotteries).
 - r>> 1 and proportional allocation leads to retail bidder receiving < min lot size
 - $\blacktriangleright \rightarrow$ Lotteries used so that winners get min lot size, losers get nothing.
 - Analysis focuses solely on this relatively common case.
 - Mean subscription rate in our 54 IPO sample is 12.

The Indian IPO Lottery Process: Example

- Assume 10,000 shares available for retail investors.
- Assume investors can bid for 100, 200, or 300 shares ("share category")
- Minimum allocation is 100 shares.
- Assume demand at final price is 40,000 shares (r = 4).

Share	Total #	Total	Total	Proportional	Win	Winner
Category	Applications	Demand	Allocated	Allocation	Probability	Allotment
(1)	(2)	$(3) = (1)^*(2)$	(4)=(3)/r	(5)=(4)/(2)	(6)	(7)
100	200	20,000	5,000	25	.25	100
200	88	17,600	4,400	50	.50	100
300	8	2,400	600	75	.75	100
Total		40,000	10,000			

• Win probability \rightarrow proportional allocation received in expectation.

- Winners get minimum lot size, losers receive no shares.
- Each IPO share category is a randomized control trial
 - In this example, 3 experiments.
 - Our sample has 383 such experiments (323 with positive returns).

Data

- IPO Applications:
 - 1.5 million retail applications to 54 IPOs from 2007 2012.
 - Data provider handled 8% of value of all IPOs in this period.
 - ▶ Observe *#* shares applied for, *#* shares allocated, zip code, cutoff bid.
- Monthly Portfolio Data:
 - ▶ 12 million accounts over period 2002 2012.
 - Full data covers 40% of Indian retail investor accounts.
 - Match to IPO applications using anonymized account #.
 - Observe full portfolio at end of month, total value and number of shares bought and sold in each month.
- IPO Characteristics
 - First day returns, industry, etc.

Characterizing the Treatment Experience

Treatment Characteristics		Percentile Across Experiments						
	Mean	10	20	50	75	90		
	(1)	(2)	(3)	(4)	(5)	(6)		
Application Amount (\$)	1803	163	392	846	1524	2174		
Probability of Treatment	0.35	0.09	0.18	0.35	0.63	0.82		
Allotment Value (\$)	150	123.8	134	145	157	165		
First Day Gain (%)	42	6.0	11.5	21.7	40.0	87.8		
First Day Gain (\$)	67	8.6	14.3	29.6	65.3	141.6		
Median Portfolio Value $(t - 1, \$)$	1866	805	1126	1632	2466	3208		

Notes: Includes 40 positive return IPOs (323 share categories) in sample. Treatment and control sample sizes are 433,042 and 1,040,031 accounts respectively.

Small treatments on average

- Gain is ≈ 1.8 percent (experimental median treatment/median portfolio size pre-experiment).
- On average, treat/control put down \$1,800 for 1st day gain of \$67.

Summary Statistics and Randomization Check

Portfolio and Trading Value

	Treatment	Control	Difference	% Experiments
				> 10% significance
	(1)	(2)	(3)	(4)
IHS(Portfolio Value)	6.575	6.573	0.002	13.00
0	0.222	0.221	0.000	10.52
0 to 500\$	0.143	0.143	-0.001	8.66
500 to 1000\$	0.097	0.097	0.000	8.63
1000 to 5000\$	0.285	0.285	0.000	9.59
> 5000 \$	0.252	0.252	-0.001	10.21
IHS(Gross Transaction Value)	5.619	5.616	0.003	11.45
0	0.287	0.288	-0.001	8.97
0 to 500\$	0.183	0.183	-0.001	9.90
500 to 1000\$	0.127	0.127	0.000	9.59
1000 to 5000\$	0.287	0.285	0.002**	14.55
> 5000 \$	0.116	0.117	-0.001*	8.97

Notes: Includes 40 positive return IPOs (323 share categories). Treatment (control) sizes are 433,042 (1,040,031) accounts. All variables defined as of month prior to the treatment IPO. IHS = Inverse-hyperbolic sine transformation.

Estimating Treatment Effects

- Compare treatment and control accounts in the 6 months prior to and following treatment.
- Cross-sectional regression in each event-time period:

$$y_{ij} = \beta_0 + \beta_1 T_{ij} + \eta_j + \epsilon_{ij}.$$

- ▶ *y*_{ij} is outcome variable of interest for investor *i* in share category *j*.
- T_{ij} = treatment dummy, η_j IPO share category fixed effect.
- Specification **only** uses randomized variation within experiment.
 - β_1 = weighted average of experiment treatment effects (Angrist 1998).
- Expect $\beta_1 = 0$ for months before treatment (placebo test).
 - All outcomes we will see exclude IPO treatment stock.

Effect on Probability of Applying for IPOs

Placebo Test: Six Months Prior to Treatment

	Month Relative to Treatment IPO								
	-6	-5	-4	-3	-2	-1			
Treatment Effect	0.0006	0.0018**	0.0003	0.0005	-0.0009	-0.0001			
	(0.0008)	(0.0009)	(0.0012)	(0.0008)	(0.0006)	(0.0010)			
Control Mean:	[0.2034]	[0.3108]	[0.2043]	[0.2172]	[0.3324]	[0.3786]			
Notes: Dependent va	riable = 1 if	account app	lied for IPO	in our data	or was allo	tted IPO not ir			
our data in month. Observations = 1,473,073; # Share Categories = 323; # IPOs = 40. Sample									
ncludes only positive	e return IPO	s.							

- No strong relationship between treatment and probability of applying to IPOs *prior to treatment*.
 - Holds for all outcomes we study (see paper for details).

Effect on Probability of Applying for IPOs

		Month Relative to Treatment IPO								
	1	2	3	4	5	6				
Treatment Effect	0.0094***	0.0071**	0.0029**	0.0019**	0.0032**	0.0013				
	(0.0015)	(0.0030)	(0.0015)	(0.0009)	(0.0012)	(0.0011)				
Control Mean	[0.4636]	[0.2242]	[0.1283]	[0.0959]	[0.1341]	[0.0605]				

- Small but significant impact on future IPO participation. (Kaustia and Knupfer, 2008).
- Likely underestimate as we only observe allotments, not applications, to most future IPOs (in progress).
- Next, we look at portfolio-wide effects a *causal* estimation enabled by our experimental setup.
 - But first, a quick digression on estimating learning models.

Treatment Effects at Share Category Level

BGR Share				Sha	re Cate	gory of	Outcor	ne IPO	: Future	e Capita	al Hold	ings Lir	nited			
Category	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128
14	.191	.034	.000	.009	001	001	.000	.004	003	003	001	002	001	.000	001	025
28	.032	.112	.028	.013	003	002	005	006	005	005	.001	001	.001	001	002	021
42	.006	.028	.063	.011	.011	.004	003	001	.002	.001	003	004	003	002	.001	017
56	006	.017	.031	.059	.013	.001	.020	.004	.003	004	.001	.002	003	.002	.000	025
70	.005	.012	.002	.022	.041	.018	.010	.016	.004	.000	002	.003	003	002	001	019
84	.002	.013	.009	.013	.013	.010	.018	.020	006	.001	.004	.007	003	003	003	003
98	.002	.003	.004	.014	.005	.007	.006	.061	.001	002	.002	.001	.000	.002	002	025
112	005	002	.005	.009	.007	.002	.006	.009	.043	.010	.005	002	.003	002	.002	023
126	009	.006	006	.015	.003	.015	.010	.011	.029	.019	.012	.009	.009	003	005	030
140	.002	.002	.006	.005	.007	.002	.004	.009	.006	.050	.020	.004	.001	002	005	038
154	008	.002	010	.002	.001	.006	.003	001	.001	.023	.012	.036	.015	.007	.013	030
168	002	002	.004	004	011	.005	.010	.019	.006	.013	.010	.018	.019	.008	011	009
182	001	002	.003	.001	005	004	002	002	007	005	.013	.013	.022	002	.037	.005
196	001	001	001	.000	.000	.000	001	.000	.000	.001	.000	.000	.000	.000	.000	.031

Notes: Treatment IPO is BGR Energy Systems. Numbers in table give the treatment effect of getting allotted in the BGR lottery on the probability the investor applies to a specific share category in the Future Capital Holdings IPO. Green: positive and significant at 10% level. Red: negative and significant at 10% level.

- Green (diagonal): Experience effects largely concentrated on diagonal (win-stay?).
- Red (upper-right): Control group more likely to apply for large amounts of shares - strategic learning about probabilities (lose-switch).
- Red (lower-left): Losers who applied for a lot of shares switch to fewer (lose-switch).

Effect on Portfolio Weight in Treatment IPO Sector

	Months After IPO Treatment								
	1	2	3	4	5	6			
Panel A: Dummy(Hold Stock in IPO Sector)									
Treatment Effect	0.0006	0.0010	0.0013	0.0018	0.0015	0.0016			
	(0.0014)	(0.0013)	(0.0013)	(0.0014)	(0.0015)	(0.0011)			
Control Mean	[0.3662]	[0.3966]	[0.3946]	[0.4038]	[0.4109]	[0.4063]			
Panel B: Portfolio	Weight IP	O Sector							
Treatment Effect	0.0001	0.0005**	0.0008***	0.0009**	0.0008***	0.0006***			
	(0.0004)	(0.0003)	(0.0003)	(0.0004)	(0.0003)	(0.0002)			
Control Mean	[0.0708]	[0.0822]	[0.0811]	[0.0823]	[0.0851]	[0.0808]			

Notes: Sector definitions based on 42 sector NIC code. Observations = 1,473,073; # Share Categories = 323; # IPOs = 40. Treatment IPO

sectoral breakdown: 54% manufacturing, 31% services, 7% technology and 4% other. Dependent variable excludes treatment IPO stock.

 Small but significant effect on portfolio weight in IPO sector (extrapolation, Greenwood et al., 2015).

Effect on Gross Trading Value in Non-IPO Stocks

	Months After IPO Treatment							
	1	2	3	4	5	6		
Treatment Effect	0.0746***	0.0742***	0.0447***	0.0333***	0.0345***	0.0345***		
	(0.0121)	(0.0082)	(0.0118)	(0.0083)	(0.0089)	(0.0066)		
Control Mean	[1.5832]	[0.9868]	[0.3052]	[0.2147]	[0.4525]	[0.2522]		
Notes: Dependent variable = IHS(buy value + sell value in month) and excludes the treatment IPO								
stock. Observations = 1,473,073; # Share Categories = 323; # IPOs = 40. Sample includes only								
positive return IPOs.								

- Treatment group trades substantially more in non-IPO stocks:
 - ▶ 7.5% more in two months after treatment.
 - ▶ 3.5% more trades six months out.
- Portfolio re-balancing?
 - Small treatment size, 6 months of trading.
 - Find negative effect on trading for IPOs w/ negative returns (more later).
- Implications:
 - Cross-security, within portfolio experience effects important.

Treatment Effect Heterogeneity

By Listing Day Returns

IPO Sample:	Positive	Negative
	Returns	Returns
	(1)	(2)
1. Future IPO Participation	0.0117***	-0.0142**
<i>Time: (t+1) to (t+6)</i>	(0.0013)	(0.0039)
2. Gross Transaction Value	0.0717***	-0.0210
<i>Time: (t+1) to (t+6)</i>	(0.0071)	(0.0192)
3. Propensity to hold IPO sector stocks	0.0022	-0.0064**
<i>Time:</i> (<i>t</i> +1) <i>to</i> (<i>t</i> +6)	(0.0015)	(0.0029)
4. Weight in IPO sector	0.0006***	-0.0011**
<i>Time: (t+6)</i>	(0.0002)	(0.0064)
5. Portfolio value > 0	0.0013***	0.0012
<i>Time: (t+1) to (t+6)</i>	(0.0004)	(0.0014)
6. Portfolio value	0.0089	-0.0154
<i>Time: (t</i> +6)	(0.0075)	(0.0209)
Observations	1,473,073	89,637

Notes: 14 IPOs (40 share categories) with negative returns. 40 IPOs (323 share categories) with positive returns.

Treatment Effect Heterogeneity by Portfolio Value Probability of Applying to Future IPO

- Sample split into deciles based portfolio value in month before IPO
- Estimate separate treatment effects for each decile

- IPO application treatment effect similar for portfolio values for portfolio values 0 to 5,000 dollars (1st 8 deciles).
- Significant positive effects even for highest decile.

Treatment Effect Heterogeneity by Portfolio Value IHS(Gross Trading Value)

- Effect declines with portfolio value.
- Significant effects even for highest decile.

Treatment Effect Heterogeneity by Account Age

Probability of Applying to Future IPO

- Bigger effects for new accounts, no major pattern in older accounts.
- Similar results for other outcomes. Age in the market attenuates effects, but not completely (List, 2011).

Conclusion

- New research design to identify experience effects.
- Experience of portfolio gain in randomly assigned IPO stock causes:
 - Small, but significant increases in IPO investment and sectoral allocation.
 - Changes in beliefs about the sectoral source of experience.
 - Large increase in trading activity accompanied by an increase in the disposition effect.
 - Not just overconfidence, suggests reference-dependent utility.
 - Luck as skill less likely than, luck as evidence of "being lucky".
- Difficult to explain results based on wealth or rebalancing effects.
- Implications (Work underway):
 - \blacktriangleright Narrow vs. portfolio framing \rightarrow within portfolio contagion effects.
 - Reference-dependent risk preferences.
 - "Learning" to bid (win-stay, lose-switch a la Roth and Erev (1995)).